

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Schwefeldioxid, Kohlenmonoxid und Benzol vom 12. - 14.09.2023

LANUV-Fachbericht 159

Inhalt

1	Einleitung	4
1.1	Ziel des Ringversuches	4
1.2	Zeitplan	4
1.3	TN-Liste	6
1.4	Übersicht über die eingesetzten Messverfahren	7
1.5	Erläuterung Bewertungsteil und ergänzende Prüfgasangebote	8
2	Zusammenfassung der Ergebnisse	9
3	Bewertungsteil	10
3.1	Bewertung nach dem z-score Verfahren	10
3.2	Ermittlung der Vorgabekonzentration (Sollkonzentration) und der Unsicherheit der Eignungsbekanntgabe	11
3.2.1	Ermittlung des zugewiesenen Wertes	11
3.2.2	Ermittlung der Unsicherheit für die Eignungsbeurteilung	11
3.3	Prüfgasangebote	13
3.4	Kenngrößen der TN-Messwerte	14
3.5	z-score-Auswertung Schwefeldioxid	15
3.6	z-score-Auswertung Kohlenmonoxid	22
3.7	z-score-Auswertung Benzol	29
4	Ergänzende Prüfgasangebote und Auswertungen	36
4.1	Messunsicherheiten der TN – E₁-Zahlen	36
4.2	E _n -Zahlen Schwefeldioxid	37
4.3	E _n -Zahlen Kohlenmonoxid	39
4.4	E _n -Zahlen Benzol	41
4.5	Querempfindlichkeiten	43
4.5.1	Schwefeldioxid	
4.5.2	Benzol	
4.6	Vergleichsmessungen ORSA-Röhrchen	65
5	Anhang	72
5.1	ORSA-Vergleichsmessungen	72
5.2	Zusätzliche organische Komponenten	75
5.3	Ergänzende Prüfgasangebote – anorganische Gase	77
5.3.1	Schwefeldioxid	
5.3.2	Kohlenmonoxid	78
Tabell	enverzeichnis	79
Abbild	lungsverzeichnis	80

1 Einleitung

In der Zeit vom 12. bis 14. September 2023 fand im LANUV NRW ein Ringversuch der staatlichen Immissionsmessstellen der Bundesländer (STIMES) statt. Der Ringversuch beinhaltete die Messkomponenten Schwefeldioxid, Kohlenmonoxid und Benzol. Folgende Messverfahren waren beteiligt:

Tabelle 1:Anzahl der TN-Verfahren

Anzahl der TN	Verfahren	Anzahl
	UV-Fluoreszenz Schwefeldioxid	19
17	Nondispersive IR (CO)	16
17	Benzol Prozess-GC	7
	Absorptionsröhren Benzol	3

1.1 Ziel des Ringversuches

- Vergleich der Messergebnisse für verschiedene Prüfgaskonzentrationen im Bereich der Grenzwerte und typischer Außenluftbedingungen
- Vorgabe von Referenzwerten mit definierter Unsicherheit
- Ermittlung von ausgesuchten Querempfindlichkeiten

1.2 Zeitplan

Montag, den 11.09.2023

Uhrzeit				
von	bis	Was?	Wo?	Prüfgas
		Anreise und Aufbau der Geräte im Technikum		
ab 08:00	17:00	Kontrollkalibrierung Teilnehmende	Technikum	

Dienstag, den 12.09.2023

Uhrzeit				
von	bis	Was?	Wo?	Prüfgas
08:00	09:30	Kalibrierzeit, Nullgas auf der Leitung	Technikum	
14:30	15:30	Begrüßung und Eingangsbesprechung		
		Bewertungsangebote mit z-Score Auswertung		
09:45	10:30	350 μg/m³ SO ₂ + 10 mg/m³ CO		PG 1
10:45	11:30	140 μg/m³ SO ₂ + 5 mg/m³ CO		PG 2
11:45	12:30	75 μg/m³ SO ₂ + 3 mg/m³ CO		PG 3
12:45	13:30	30 μg/m³ SO ₂ + 2 mg/m³ CO		PG 4

Uhrzeit				
von	bis	Was?	Wo?	Prüfgas
13:45	14:30	50 μg/m³ SO ₂ + 1 mg/m³ CO		PG 5
		Ergänzungsangebot N1 -Querempfindlichkeiten SO ₂		
14:45	15:30	100 μg/m³ SO ₂		PG 6
15:45	17:45	SO ₂ 30 μg/m³ + 4 mmol/mol H ₂ O (ca. 15 % rel. Feuchte)		PG 7
18:00	20:00	SO ₂ 100 μg/m³ + 10 mmol/mol H ₂ O (ca. 40 % rel. Feuchte)		PG 8
20:15	22:15	SO ₂ 30 μg/m³ + 10 mmol/mol H ₂ O (ca. 40 % rel. Feuchte)		PG 9
22:30	00:30	100 μg/m³ SO ₂		PG 10
00:45	01:45	SO ₂ 100 μg/m³ + 500 nmol/mol NO		PG 11
02:00	03:00	SO ₂ 30 μg/m³ + 500 nmol/mol NO		PG 12
03:15	04:15	SO ₂ 30 μg/m³ + 50 nmol/mol NO		PG 13
04:30	06:00	30 μg/m³ SO ₂ + 2 mg/m³ CO		PG 14
06:15	07:00	Nullgas		PG 15

Mittwoch, den 13.09.2023

Uhrzeit				
von	bis	Was?	Wo?	Prüfgas
08:00	09:30	Kalibrierzeit, Nullgas auf der Leitung	Technikum	
		Bewertungsangebote mit z-Score Auswertung		
10:00	12:00	Benzol 1 μg/m³		PG 16
12:30	14:30	Benzol 2 μg/m³		PG 17
15:00	17:00	Benzol 5 μg/m³		PG 18
17:30	19:30	Benzol 3 μg/m³		PG 19
20:00	22:00	Benzol 7,5 μg/m³		PG 20
17:30		Ende der Arbeiten im Technikum		
		Nachtangebot N2		
22:30	23:30	Nullgas		PG 21
00:00	02:00	Benzol 5 μg/m³ + 4 mmol/mol H ₂ O (ca. 15 % rel. Feuchte)		PG 22
02:30	04:30	Benzol 5 μg/m³ + 10 mmol/mol H ₂ O (ca. 40 % rel. Feuchte)	Technikum	PG 23
05:00	07:00	Benzol 5 μg/m³ + 180 μg/m³ Ozon		PG 24

Donnerstag, den 14.09.2023

Uhrzeit				
von	bis	Was?	Wo?	Prüfgas
07:30	09:30	Benzol 5 μg/m³	Technikum	PG 25
09:45	11:45	Kalibrierzeit - Nullgas auf der Leitung		
09:00	09:30	Abschlussbesprechung		
16:00		Ende der Arbeiten im Technikum		

1.3 TN-Liste

Tabelle 2: TN-Liste

Messstelle	Straße	PLZ	Ort
LANUV FB 43	Wallneyer Str. 6	45133	Essen
Umweltbundesamt Außenstelle Langen	Paul-Ehrlich-Straße 29	63225	Langen
Die Senatorin für Umwelt, Klima und Wissenschaft (Bremen)	An der Reeperbahn 2	28217	Bremen
Landesamt für Umwelt- und Arbeitsschutz Saarbrücken	Don-Bosco-Str. 1	66119	Saarbrücken
Thüringer Landesamt für Umwelt, Bergbau und Naturschutz	Göschwitzer Straße 41	07745	Jena
Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft	Altwahnsdorf 12	01445	Radebeul
Hessisches Landesamt für Naturschutz, Umwelt und Geologie	Rheingaustr. 186	65203	Wiesbaden
Landesanstalt für Umwelt Baden-Württemberg	Großoberfeld 3	76135	Karlsruhe
Landesamt für Umweltschutz Sachsen-Anhalt Außenstelle Magdeburg	Wallonerberg 6 - 7	39104	Magdeburg
Staatliches Gewerbeaufsichtsamt Hildesheim	Goslarsche Straße 3	31134	Hildesheim
Landeslabor Berlin-Brandenburg	Müllroser Chaussee 50	15236	Frankfurt Oder
Institut für Hygiene und Umwelt	Marckmannstraße 129a	20539	Hamburg
Landesamt für Umwelt, Rheinland-Pfalz	Rheinallee 97 - 101	55118	Mainz
Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt	Brückenstraße 6	10179	Berlin
Landesamt für Umwelt Brandenburg	Seeburger Chaussee 2	14476	Potsdam
Bayerisches Landesamt für Umwelt	Bürgermeister-Ulrich- Straße 160	86179	Augsburg
LANUV FB 42	Wallneyer Str. 6	45133	Essen

1.4 Übersicht über die eingesetzten Messverfahren

 Tabelle 3:
 Eingesetzte Messverfahren

TN	Analysemethoden	Komponente
TN01	Horiba APMA 370	Kohlenmonoxid
TN01	Environnement AF22 M	Schwefeldioxid
TN02	Horiba APMA 370	Kohlenmonoxid
TN02	Teledyne SO ₂ -Analysator	Schwefeldioxid
TN03	AMA GC 5000	Benzol
TN06	Lösungsmitteldesorption	Benzol
TN07	AMA GC 5000	Benzol
TN08	Thermo 43i	Schwefeldioxid
TN09	Horiba APSA 370	Schwefeldioxid
TN10	Horiba APMA 370	Kohlenmonoxid
TN12	Environnement AF22 e	Schwefeldioxid
TN14	Horiba APMA 360	Kohlenmonoxid
TN15	AMA GC 5000	Benzol
TN17	Horiba APMA 370	Kohlenmonoxid
TN17	Horiba APSA 370	Schwefeldioxid
TN18	Thermo 43 iQ	Schwefeldioxid
TN19	Horiba APMA 370	Kohlenmonoxid
TN20	Thermo 48i	Kohlenmonoxid
TN20	Horiba APSA 370	Schwefeldioxid
TN21	Horiba APMA 370	Kohlenmonoxid
TN21	Horiba APSA 370	Schwefeldioxid
TN22	Teledyne 300 T	Kohlenmonoxid
TN22	Environnement AF22 e	Schwefeldioxid
TN23	AMA GC 5000	Benzol
TN25	Horiba APMA 370	Kohlenmonoxid
TN25	Horiba APSA 370	Schwefeldioxid
TN26	airmo VOC BTC GC 866	Benzol
TN27	AMA GC 5000	Benzol
TN28	Horiba APMA 370	Kohlenmonoxid
TN28	Thermo 43i	Schwefeldioxid
TN30	Horiba APMA 370	Kohlenmonoxid
TN30	Horiba APSA 370	Schwefeldioxid
TN32	Environnement AF22 e	Schwefeldioxid
TN33	Lösungsmitteldesorption	Benzol
TN34	Teledyne 300 T	Kohlenmonoxid
TN34	Teledyne SO ₂ -Analysator	Schwefeldioxid
	-	

TN	Analysemethoden	Komponente
TN35	Thermo 48 iQ	Kohlenmonoxid
TN35	Teledyne SO ₂ -Analysator	Schwefeldioxid
TN36	Environnement AF22 e	Schwefeldioxid
TN37	Horiba APMA 370	Kohlenmonoxid
TN37	Horiba APSA 370	Schwefeldioxid
TN38	Horiba APMA 370	Kohlenmonoxid
TN38	Horiba APSA 370	Schwefeldioxid
TN39	airmo VOC BTC GC 866	Benzol
TN40	Lösungsmitteldesorption	Benzol

1.5 Erläuterung Bewertungsteil und ergänzende Prüfgasangebote

Das Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen ist ein durch die DAkkS nach DIN EN ISO/IEC 17043:2010 akkreditierter Eignungsprüfungsanbieter. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-EP-14200-01-00) aufgeführten Akkreditierungsumfang. Alle Auswertungen und die Erstellung dieses Berichtes erfolgten ausschließlich durch die Mitarbeiterinnen und Mitarbeiter des LANUV. Für Teile der Auswertung wurde die Software PROLab Plus der Fa. Quodata verwendet.

Der vorliegende Bericht dient zur Dokumentation der Ergebnisse eines STIMES-Ringversuches. Der Bericht ist in zwei Teile unterteilt.

- 1) Einen Bewertungsteil (Kapitel 3)
- 2) Ergänzende Angebote und Auswertungen (Kapitel 4)

Die Beurteilung der Eignung erfolgt anhand der TN-Messwerte durch eine z-score Auswertung. Über die erfolgreiche Teilnahme an einem Ringversuch wird zusätzlich zu diesem Bericht ein TN-Zertifikat ausgestellt.

Neben der reinen Eignungsbekanntgabe finden im Rahmen des STIMES-Arbeitskreises umfangreiche weitere Untersuchungen statt. Bei diesem Ringversuch wurden ergänzende Angebote zur Ermittlung der Querempfindlichkeit der Messverfahren auf ausgesuchte Störkomponenten dosiert und die Querempfindlichkeiten ermittelt.

Zusätzlich hatten interessierte TN die Möglichkeit an einer Vergleichsmessung für Benzol auf Aktivkohle teilzunehmen. Als Probenträger dienten ORSA-Röhrchen der Fa. Dräger. Interessierte TN erhielten jeweils vier ORSA-Röhrchen zur Analyse von BTEX. Diese wurden kodiert an die TN verteilt.

2 Zusammenfassung der Ergebnisse

Die Standardabweichung der TN-Messwerte für die Bewertungsangebote lag für die Komponenten Schwefeldioxid zwischen 0,6 und 5,1 µg/m³ bei im Mittel 1,5 % relativer Standardabweichung und für die Komponente Kohlenmonoxid bei 0,04 bis 0,08 mg/m³ bei einer relativen Standardabweichung von 0,9 bis 4,1 %. Für die Komponente Benzol lag die Standardabweichung zwischen 0,3 und 0,5 µg/m³ (relative Standardabweichung 7 bis 27 %).

Die Abschnitte 3.5 bis 3.7 zeigen die Ergebnisse der TN mit den z'/z-score Auswertungen. Bei der Komponente Schwefeldioxid erfüllten zwei von 19 TN-Verfahren die Anforderungen nicht (ein Verfahren verfehlte die Anforderungen knapp). Für die Komponenten Kohlenmonoxid (16 TN) und Benzol (10 TN) wurden die Anforderungen von allen TN erfüllt.

Alle TN waren aufgefordert, Angaben zur Messunsicherheit zu machen. Als ergänzende Auswertung wurde für alle Prüfgasangebote aus dem Bewertungsteil mittels der von den TN angegebenen Unsicherheiten die E_n-Zahlen nach DIN ISO 13528 berechnet (siehe Kapitel 4). Für die Komponenten Schwefeldioxid und Kohlenmonoxid liegen fast alle E_n-Zahlen im Bereich -1 bis +1. Lediglich bei der Komponente Benzol haben zwei TN Probleme bei der Einhaltung dieses Kriteriums und damit verbunden mit der Schätzung der Messunsicherheiten.

Im Abschnitt 4.5 wurden die Querempfindlichkeiten von Schwefeldioxid gegenüber Wasserdampf und Ozon untersucht. Bei der Komponente Schwefeldioxid zeigten sich gegenüber Wasserdampf erst bei 40 % Feuchte und einer Schwefeldioxid-Konzentration von 100 μ g/m³ leichte negative Querempfindlichkeiten (Mittelwert -2,8 μ g/m³), die aber weit unterhalb der maximal zulässigen Querempfindlichkeit von 26,6 μ g/m³ (10 nmol/mol) liegt. Bei der Dosierung von 500 nmol/mol Stickstoffmonoxid kommt es unabhängig von der SO₂-Konzentration zu positiven Querempfindlichkeiten von im Mittel ca. 8 μ g/m³. Keiner der TN reißt aber den maximal zulässigen Wert von 13,3 μ g/m³ (5 nmol/mol). Bei der Komponte Benzol konnten nur marginale Querempfindlichkeiten registriert werden.

In Abschnitt 4.6 befindet sich eine Übersicht über die Ergebnisse der BTEX-Vergleichsmessungen der ORSA-Röhrchen. Die Röhrchen wurden zur Vergleichsmessung für BTEX an interessierte TN des Ringversuches verteilt. Die Analyse erfolgte dann in den Laboratorien der TN bzw. wurde von den TN an externe Auftragnehmer*innen vergeben. Ein TN hat bei allen Komponenten Minderbefunde gemessen.

3 Bewertungsteil

3.1 Bewertung nach dem z-score Verfahren

Der z-score (z-Wert) ist ein standardisiertes Maß für die systematische Abweichungskomponente eines Laboratoriums, berechnet unter Verwendung des zugewiesenen Wertes (Sollwert) und der Standardabweichung für die Eignungsbeurteilung.

Ein z-score, der den Betrag von 3 überschreitet, bedeutet eine Überschreitung der Kontrollgrenzen und somit einen fehlerhaften Wert. Ein z-score oberhalb des Betrages 2 stellt ein Warnsignal dar.

Der z-score wird nach folgender Formel berechnet:

$$z = \frac{x - X}{\sigma_{nt}}$$

z z-score

x Konzentration einzelner TN

X zugewiesener Wert (Sollwert)

σ_{pt} Standardabweichung für die Eignungsbeurteilung

Durch die Normierung auf die Präzisionsvorgabe gibt es für die z-scores ein allgemeines Bewertungsschema:

 $|z| \le 2$ Ergebnis zufriedenstellend

2 < |z| < 3 Ergebnis fraglich

 $|z| \ge 3$ Ergebnis unzureichend

Die Bewertung der Gesamtleistung erfolgt komponentenweise, wobei 80 % der Angebote einer Komponente (eines Merkmals) mit einen zufriedenstellenden z-/z'-score von $|z| \le 2$ bewertet sein müssen. Dies entspricht einer Quote von 4 von 5 der pro Komponente angebotenen Prüfgaskonzentrationen. Grundsätzlich wird allen TN, die z-score-Beträge größer als 2 erzielt haben, empfohlen, ihr Analyseverfahren zu überprüfen.

Im Falle der Komponente Benzol beinhaltet die Standardabweichung für die Eignungsbeurteilung die Unsicherheit des Referenzwertes. Daher handelt es sich hier um z'-scores, die aber wie die z-scores zu interpretieren sind.

3.2 Ermittlung der Vorgabekonzentration (Sollkonzentration) und der Unsicherheit der Eignungsbekanntgabe

3.2.1 Ermittlung des zugewiesenen Wertes

Für die Komponenten Schwefeldioxid und Kohlenmonoxid erfolgte die Ermittlung des zugewiesenen Wertes durch Berechnung des robusten Mittelwertes aller TN mit der Methode des Hampel-Schätzers nach DIN ISO 13528.

Für die Komponente Benzol standen nur 10 TN-Messwerte zur Verfügung. Daher wurde der zugewiesene Wert aus dem Mittelwert der Messung bzw. des aus der Dosierung berechneten Gehaltes der nationalen Referenzlaboratorien (UBA und LANUV NRW) gebildet.

3.2.2 Ermittlung der Unsicherheit für die Eignungsbeurteilung

Die Unsicherheit der Eignungsbekannntgabe σ_{pt} wurde für die Komponenten Schwefeldioxid und Kohlenmonoxid aus der robusten Standardabweichung s^* der TN-Messwerte mit der Q-Methode nach DIN ISO 13528 berechnet.

Die Berechnung der Unsicherheit des zugewiesenen Wertes aus der robusten Standardauswertung der TN-Messwerte erfolgt dann nach DIN ISO 13528 durch

$$u(x_{pt}) = 1.25 \cdot \frac{s^*}{\sqrt{p}}$$

u(x_{pt}) Unsicherheit des zugewiesenen Wertes [µg/m³]

s* robuste Standardabweichung der TN-Werte [µg/m³]

p Anzahl der TN-Werte für den Schätzwert

Für die Komponente Benzol wurde, aufgrund der geringeren Anzahl der TN, die Vorgabe für die maximale Abweichung des TN-Ergebnisses vom Sollwert (Präzisionsvorgabe) von der Anforderung an die einzuhaltende Messunsicherheit des TN-Ergebnisses wie folgt abgeleitet. Sie setzt sich aus den wesentlichen Unsicherheitsbeträgen zusammen

- Unsicherheit der Prüfgaskonzentration/des Sollwertes (U_{ref}); sie wird vom Veranstalter zusammen mit dem Sollwert angegeben und nachvollziehbar begründet
- maximal zulässige Messunsicherheit des TN-Ergebnisses (U_{Lab}); sie leitet sich aus den Datenqualitätszielen der entsprechenden EU-Tochterrichtlinien ab. Die in den EU-Richtlinien angegebenen Werte gelten für Feldmessungen. Da unter Ringversuchsbedingungen eine Reihe von Messunsicherheitskomponenten wie Probenahmeeffekte, Langzeitdriften oder Querempfindlichkeiten nicht zum Tragen kommen, wurden die zulässigen Toleranzen der Datenqualitätsanforderungen halbiert (siehe Tabelle 5)

Entsprechende Unsicherheitsberechnungen nach dem Muster der VDI 4202 bzw. den CEN-Normen EN 14211 und 14212 für NO₂ und SO₂ haben gezeigt, dass die o. g. Anforderungen eine plausible Größenordnung darstellen.

• Messunsicherheit in der Nähe des Nullpunktes (U₀); die aus den Datenqualitätszielen der EU-Richtlinien abgeleitete zulässige Messunsicherheit gilt zunächst für den Bereich des Grenzwertes. Die prozentuale Angabe mit Bezug auf die Messwertkonzentration lässt sich nicht unverändert bis zu niedrigen Konzentrationen als alleinige Anforderung beibehalten, da die zulässige Messunsicherheit sonst unrealistisch klein wird. Bei niedrigen Konzentrationen muss vielmehr die Messunsicherheit in der Nähe des Nullpunktes berücksichtigt werden, die für einen unteren Konzentrationsbereich als konstant angesehen werden kann. Sie wird gemäß der Werte in der Tabelle 4 berücksichtigt.

Die Unsicherheit des Vorgabewertes wird als $U_{Vorgabe}$ bezeichnet. Sie wird nach DIN ISO 13528 auch als Unsicherheit der Eignungsbeurteilung U_X benannt und wie folgt berechnet:

$$U_{\mathit{Vorgabe}} = \sqrt{U_{\mathit{ref}}^{\ 2} + U_{\mathit{Lab}}^{\,2}}$$

bzw. für U_{lab}< U₀

$$U_{\textit{Vorgabe}} = \sqrt{{U_{\textit{ref}}}^2 + {U_0}^2}$$

U_{ref} Erweiterte (95 %) Unsicherheit des Referenzwertes (Sollwert)

U_{Vorgabe} Erweiterte (95 %) Unsicherheit des Vorgabewertes (der Eignungsbeurteilung)

U_{Lab} Erweiterte (95 %) zugesicherte Unsicherheit des TN-Messwertes

U₀ Erweiterte (95 %) zugesicherte Mindestunsicherheit des TN-Messwertes

Tabelle 4: Kriterien für die Leistungsfähigkeit

Komponente	U0	ULab [%]
Benzol	0,5 µg/m³	12.5

Die Messunsicherheit des Referenzwertes U_{ref} setzt sich aus der Unsicherheit der Ermittlung des Referenzwertes selbst und einem zusätzlichen Beitrag durch Inhomogenität in der Entnahmestrecke zusammen. Der erweiterte Unsicherheitsbeitrag der Inhomogenität beträgt weniger als 0,7 %. Hierbei konnten systematische Konzentrationsunterschiede sicher ausgeschlossen werden. Daher soll als erweiterter Unsicherheitsbeitrag für die Inhomogenität 0,7 % zu Grunde gelegt werden. Die erweiterte (95 %) Unsicherheit des Referenzwertes U_{ref} (Sollwert) setzt sich dann zusammen aus

$$U_{ref} = \sqrt{{U_S}^2 + {U_I}^2}$$

Us Unsicherheit des Sollwertes

 U_I Unsicherheitsbeitrag durch Inhomogenität = 0,7 % von U_s

$$\sigma_{pt} = \frac{U_{Vorgabe}}{2}$$

 σ_{pt} Standardabweichung des Vorgabewertes (der Eignungsbeurteilung)

3.3 Prüfgasangebote

 Tabelle 5:
 Prüfgasangebote Bewertungsteil Benzol

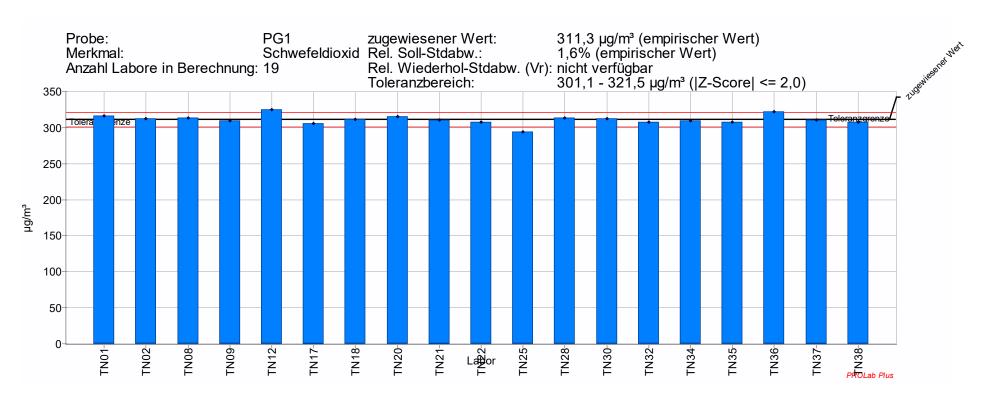
Prüfgasangebot	Einheit	zugewiesener Wert	U _{ref}	U _{lab}	σ_{pt}
PG16	ppb	1,1	0,14	0,50	0,26
PG17	ppb	2,1	0,22	0,50	0,27
PG19	ppb	3,0	0,18	0,50	0,27
PG18	ppb	5,1	0,42	0,64	0,38
PG20	ppb	7,2	0,32	0,90	0,48

 Tabelle 6:
 Prüfgasangebote Bewertungsteil Schwefeldioxid und Kohlenmonoxid

Prüfgasangebot	Komponente	Einheit	zugewiesener Wert	σ_{pt}
PG1	Schwefeldioxid	μg/m³	311,3	5,1
PG2	Schwefeldioxid	μg/m³	128,1	1,4
PG3	Schwefeldioxid	μg/m³	70,8	0,9
PG4	Schwefeldioxid	μg/m³	30,8	0,6
PG5	Schwefeldioxid	μg/m³	49,0	0,8
PG1	Kohlenmonoxid	mg/m³	8,69	0,08
PG2	Kohlenmonoxid	mg/m³	4,43	0,05
PG3	Kohlenmonoxid	mg/m³	2,71	0,04
PG4	Kohlenmonoxid	mg/m³	1,83	0,04
PG5	Kohlenmonoxid	mg/m³	0,94	0,04

3.4 Kenngrößen der TN-Messwerte

Aus den Messwerten der TN wurden neben Median und Standardabweichung s auch der robuste Vorgabewert X^* und die robuste Standardabweichung s nach DIN ISO 13528 Anhang C berechnet.


 Tabelle 7:
 Kenngrößen der TN-Messwerte

Prüfgasangebot	Komponente	Einheit	Median	s	s rel.	X *	s*
PG16	Benzol	μg/m³	1,1	0,3	27,3 %	1,1	0,1
PG17	Benzol	µg/m³	2,1	0,3	14,3 %	2,1	0,1
PG18	Benzol	μg/m³	5,0	0,4	7,8 %	5,0	0,3
PG19	Benzol	μg/m³	3,1	0,3	10,0 %	3,1	0,2
PG20	Benzol	μg/m³	7,4	0,5	6,9 %	7,4	0,3
Nullgas	Benzol	μg/m³	0,0	0,0	-	0,0	0,0
PG22	Benzol	μg/m³	5,0	0,2	4,0 %	5,0	0,2
PG23	Benzol	μg/m³	5,0	0,2	4,0 %	5,0	0,2
PG24	Benzol	μg/m³	5,0	0,3	6,0 %	5,0	0,3
PG25	Benzol	μg/m³	5,0	0,3	6,0 %	5,0	0,3
PG1	Schwefeldioxid	μg/m³	310,8	5,1	1,6 %	311,3	5,1
PG2	Schwefeldioxid	μg/m³	128,0	1,4	1,1 %	128,1	1,4
PG3	Schwefeldioxid	μg/m³	70,6	0,9	1,3 %	70,8	0,9
PG4	Schwefeldioxid	μg/m³	30,5	0,6	1,9 %	30,8	0,6
PG5	Schwefeldioxid	μg/m³	48,9	0,8	1,6 %	49,0	0,8
PG6	Schwefeldioxid	μg/m³	93,8	1,5	1,6 %	93,9	1,5
PG7	Schwefeldioxid	μg/m³	30,6	1,3	4,2 %	30,8	1,3
PG8	Schwefeldioxid	μg/m³	90,8	1,9	2,1 %	91,0	1,9
PG9	Schwefeldioxid	µg/m³	31,0	1,3	4,2 %	30,8	1,3
PG10	Schwefeldioxid	µg/m³	93,5	1,8	1,9 %	93,8	1,8
PG11	Schwefeldioxid	µg/m³	101,6	3,8	3,7 %	101,8	3,8
PG12	Schwefeldioxid	μg/m³	38,7	3,2	8,1 %	39,4	3,2
PG13	Schwefeldioxid	µg/m³	32,2	1,3	4,0 %	32,2	1,3
PG14	Schwefeldioxid	µg/m³	31,3	1,0	3,2 %	31,3	1,0
Nullgas	Schwefeldioxid	μg/m³	0,5	0,9	-	0,7	0,9
PG1	Kohlenmonoxid	mg/m³	8,67	0,08	0,9 %	8,69	0,08
PG2	Kohlenmonoxid	mg/m³	4,42	0,05	1,1 %	4,43	0,05
PG3	Kohlenmonoxid	mg/m³	2,71	0,04	1,5 %	2,71	0,04
PG4	Kohlenmonoxid	mg/m³	1,83	0,04	2,2 %	1,83	0,04
PG5	Kohlenmonoxid	mg/m³	0,94	0,04	4,3 %	0,94	0,04
PG14	Kohlenmonoxid	mg/m³	1,82	0,05	2,7 %	1,83	0,05
Nullgas	Kohlenmonoxid	mg/m³	0,00	0,03	-	0,00	0,03

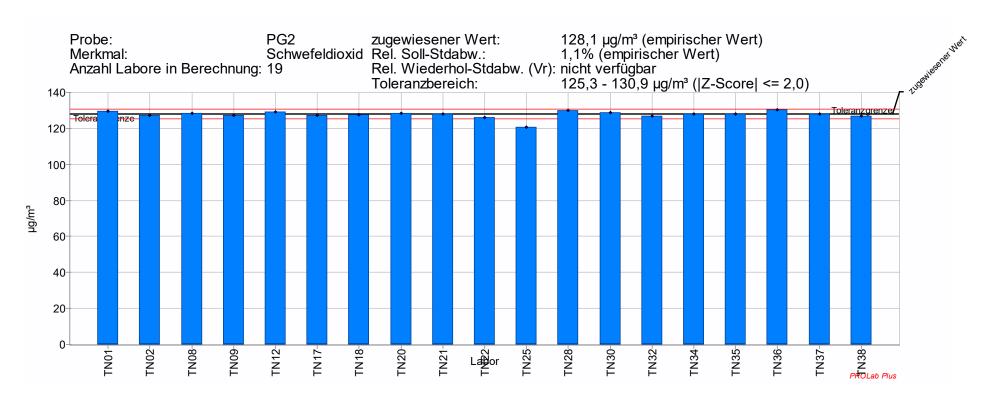
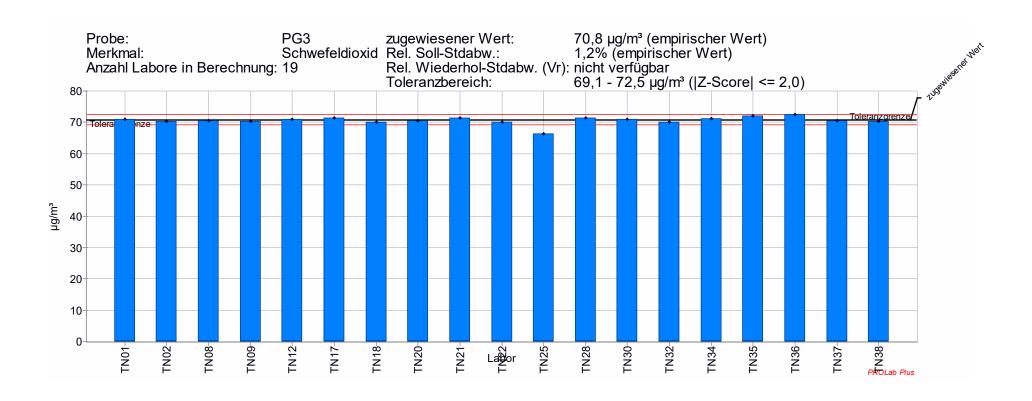
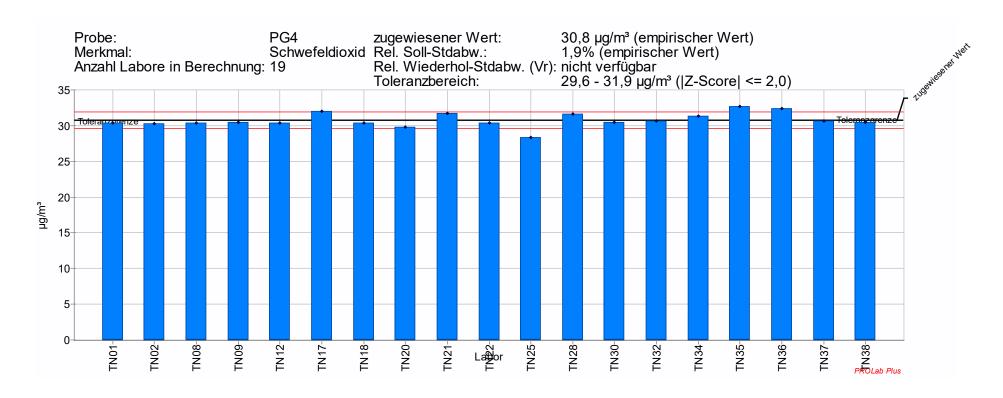

3.5 z-score-Auswertung Schwefeldioxid

 Tabelle 8:
 z-score-Auswertung Schwefeldioxid


				Z-		Z-		Z-		Z-
TN	PG 1	z-score	PG 2	score	PG 3	score	PG 4	score	PG 5	score
	μg/m³		μg/m³		μg/m³		μg/m³		μg/m³	
TN01	316,1	0,9	129,7	1,1	71,0	0,2	30,4	-0,7	49,0	-0,1
TN02	312,2	0,2	127,4	-0,5	70,2	-0,7	30,3	-0,8	48,3	-0,9
TN08	313,4	0,4	128,6	0,4	70,6	-0,3	30,4	-0,7	48,6	-0,5
TN09	309,6	-0,3	127,2	-0,7	70,3	-0,6	30,4	-0,6	49,5	0,5
TN12	324,7	2,6	129,0	0,6	70,9	0,1	30,4	-0,7	48,9	-0,2
TN17	305,5	-1,1	127,1	-0,7	71,4	0,7	32,0	2,1	50,0	1,1
TN18	311,9	0,1	127,7	-0,3	70,1	-0,9	30,4	-0,7	48,8	-0,3
TN20	314,9	0,7	128,5	0,3	70,5	-0,4	29,8	-1,7	48,4	-0,8
TN21	310,0	-0,3	128,2	0,1	71,4	0,7	31,7	1,6	49,8	0,9
TN22	307,2	-0,8	126,1	-1,4	70,0	-1,0	30,4	-0,7	48,5	-0,6
TN25	293,8	-3,4	120,8	-5,2	66,4	-5,2	28,3	-4,3	46,2	-3,4
TN28	313,6	0,4	130,0	1,3	71,5	0,8	31,6	1,4	49,2	0,2
TN30	312,5	0,2	128,8	0,5	71,0	0,2	30,5	-0,5	49,4	0,4
TN32	307,9	-0,7	126,7	-1,0	70,0	-1,0	30,7	-0,1	48,6	-0,5
TN34	309,8	-0,3	128,0	-0,1	71,1	0,3	31,3	0,9	49,4	0,4
TN35	307,7	-0,7	128,0	-0,1	72,0	1,4	32,7	3,3	50,2	1,4
TN36	322,4	2,2	130,3	1,5	72,6	2,1	32,4	2,9	50,4	1,6
TN37	310,8	-0,1	128,0	-0,1	70,5	-0,4	30,7	-0,2	48,8	-0,3
TN38	308,0	-0,6	126,9	-0,9	70,3	-0,6	30,5	-0,5	48,2	-1,0
X	311,3		128,1		70,8		30,8		49,0	
σ_{pt}	5,1		1,4		0,9		0,6		0,8	
N	19		19		19		19		19	


Abbildung 1: Prüfgasangebot PG 1 – Komponente Schwefeldioxid

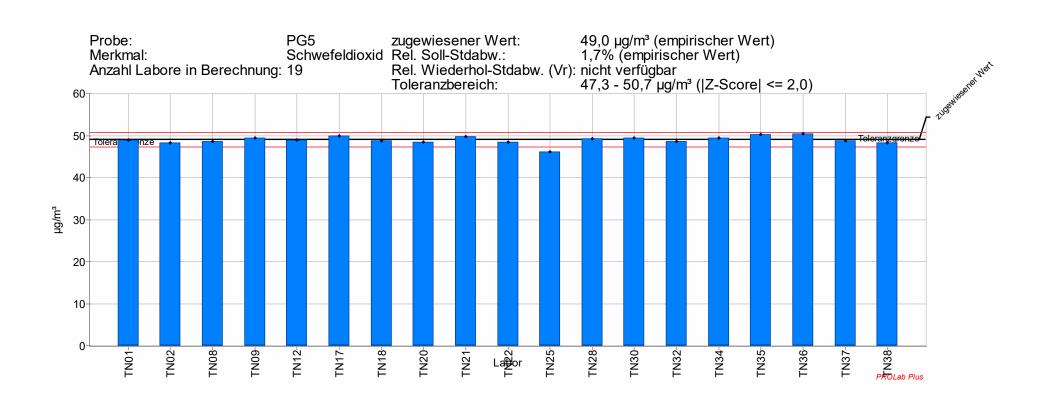

Abbildung 2: Prüfgasangebot PG 2 – Komponente Schwefeldioxid

Abbildung 3: Prüfgasangebot PG 3 – Komponente Schwefeldioxid

Abbildung 4: Prüfgasangebot PG 4 – Komponente Schwefeldioxid

Abbildung 5: Prüfgasangebot PG 5 – Komponente Schwefeldioxid

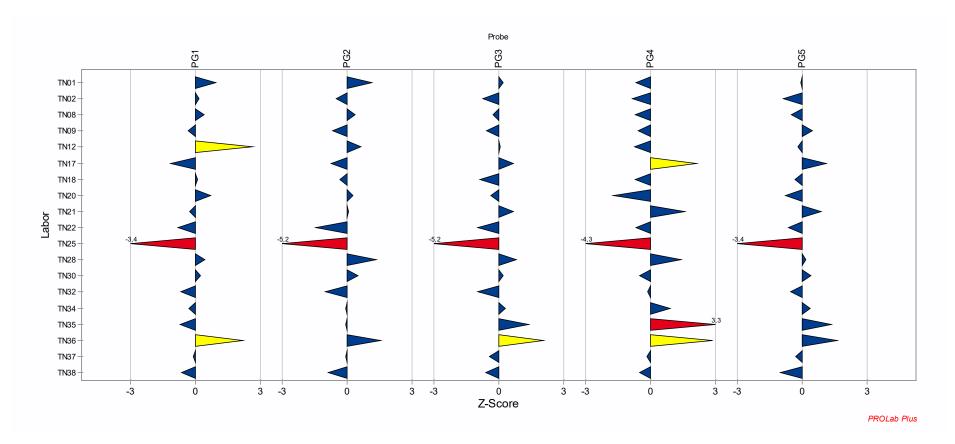
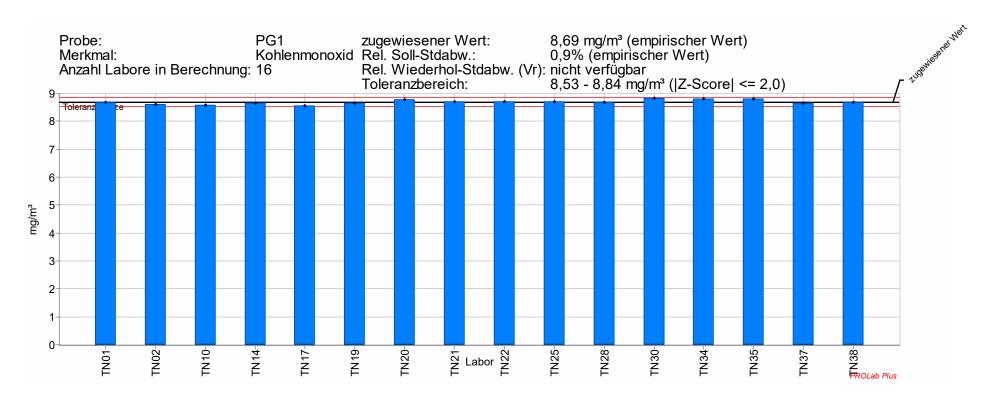



Abbildung 6: z-score Übersicht Schwefeldioxid

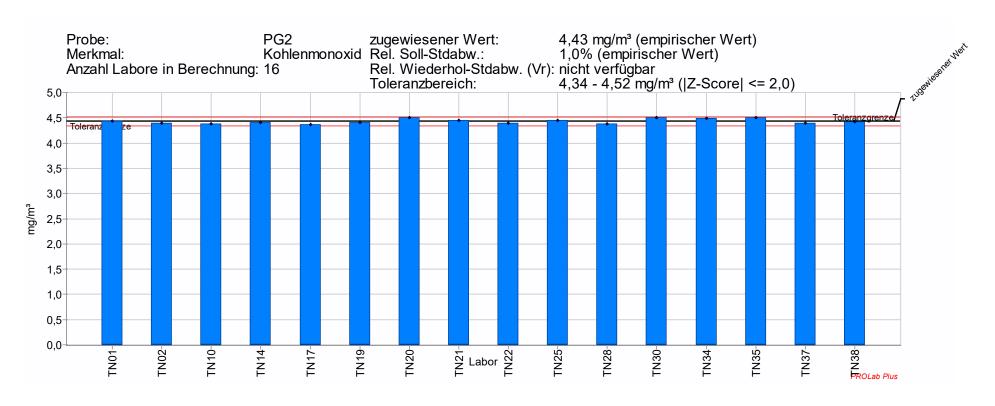
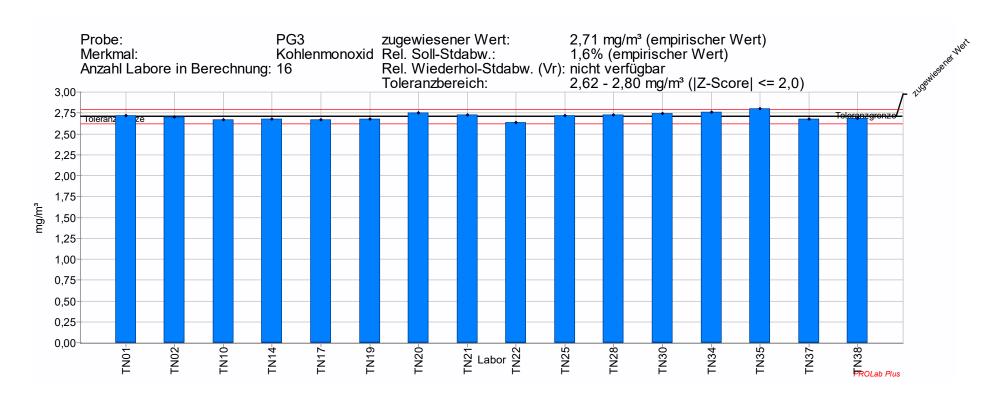
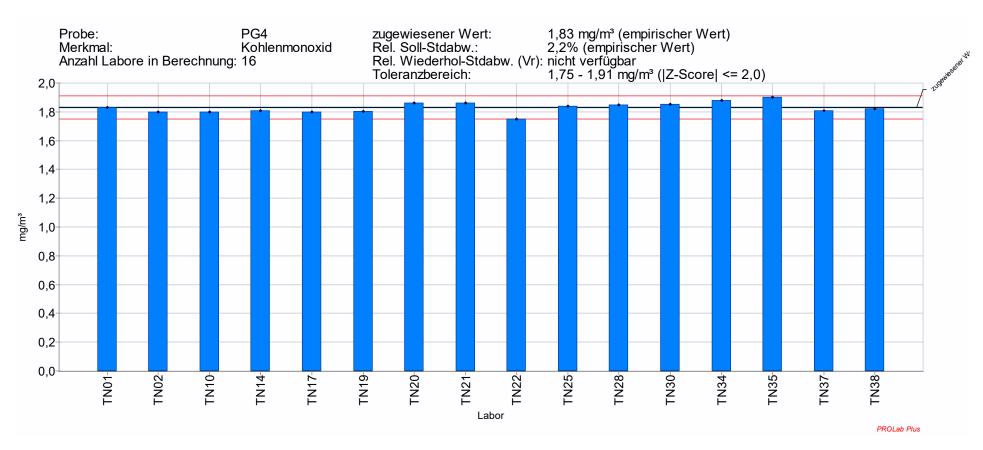
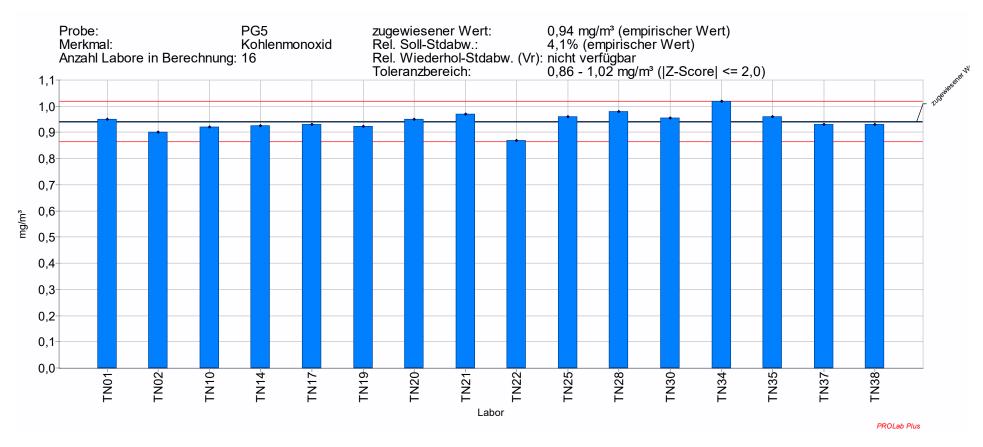

3.6 z-score-Auswertung Kohlenmonoxid

 Tabelle 9:
 z-score-Auswertung Kohlenmonoxid


TN	PG 1	z- score	PG 2	z- score	PG 3	z- score	PG 4	z- score	PG 5	z- score
	mg/m³		mg/m³		mg/m³		mg/m³		mg/m³	
TN01	8,67	-0,2	4,44	0,2	2,72	0,3	1,83	0,0	0,95	0,2
TN02	8,60	-1,1	4,40	-0,7	2,70	-0,2	1,80	-0,7	0,90	-1,1
TN10	8,59	-1,3	4,38	-1,1	2,67	-0,9	1,80	-0,7	0,92	-0,6
TN14	8,66	-0,3	4,41	-0,4	2,68	-0,7	1,81	-0,5	0,93	-0,4
TN17	8,56	-1,7	4,36	-1,5	2,67	-0,9	1,80	-0,7	0,93	-0,3
TN19	8,65	-0,5	4,40	-0,6	2,68	-0,7	1,80	-0,6	0,92	-0,5
TN20	8,77	1,0	4,50	1,5	2,75	0,9	1,86	0,8	0,95	0,2
TN21	8,70	0,1	4,45	0,4	2,73	0,5	1,86	0,8	0,97	0,7
TN22	8,70	0,1	4,40	-0,7	2,64	-1,5	1,75	-2,0	0,87	-1,9
TN25	8,71	0,3	4,45	0,4	2,72	0,3	1,84	0,3	0,96	0,5
TN28	8,67	-0,2	4,38	-1,1	2,73	0,5	1,85	0,5	0,98	1,0
TN30	8,82	1,7	4,50	1,6	2,74	0,8	1,85	0,5	0,95	0,3
TN34	8,81	1,6	4,49	1,3	2,76	1,2	1,88	1,3	1,02	2,0
TN35	8,80	1,4	4,50	1,5	2,80	2,1	1,90	1,8	0,96	0,5
TN37	8,65	-0,5	4,40	-0,7	2,68	-0,6	1,81	-0,5	0,93	-0,3
TN38	8,67	-0,2	4,42	-0,2	2,69	-0,4	1,82	-0,2	0,93	-0,3
X	8,69		4,43		2,71		1,83		0,94	
σ_{pt}	0,08		0,05		0,04		0,04		0,04	
N	16		16		16		16		16	


Abbildung 7: Prüfgasangebot PG 1 – Komponente Kohlenmonoxid


Abbildung 8: Prüfgasangebot PG 2 – Komponente Kohlenmonoxid

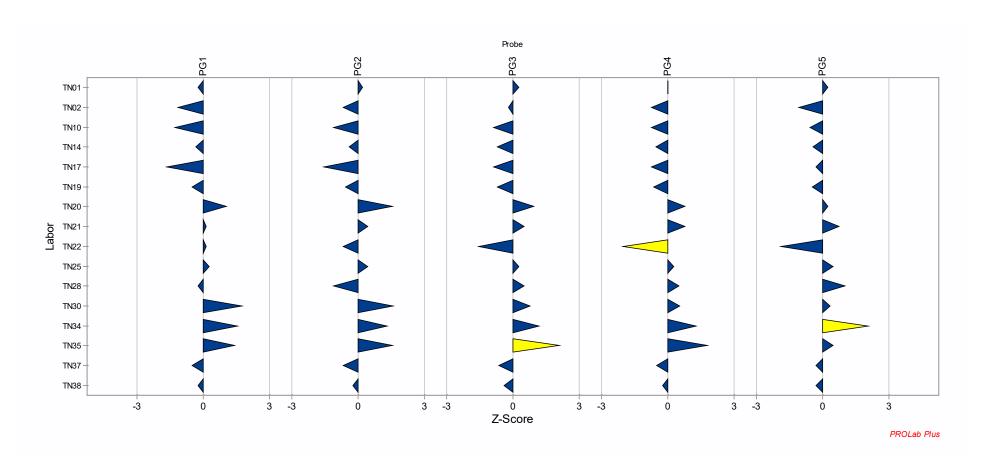

Abbildung 9: Prüfgasangebot PG 3 – Komponente Kohlenmonoxid

Abbildung 10 Prüfgasangebot PG 4 – Komponente Kohlenmonoxid

Abbildung 11: Prüfgasangebot PG 5 – Komponente Kohlenmonoxid

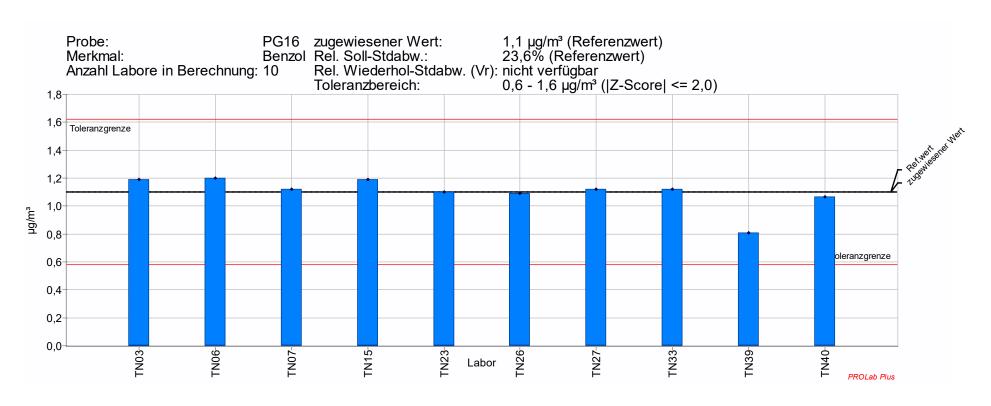


Abbildung 12: z-score Übersicht Kohlenmonoxid

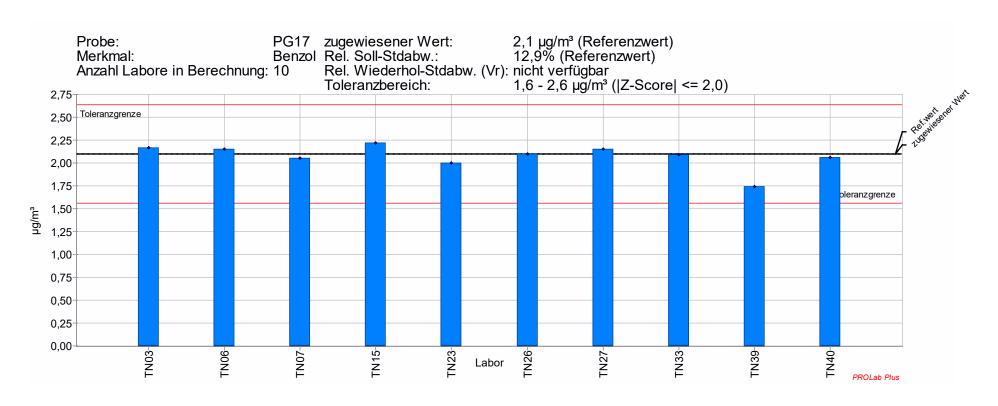
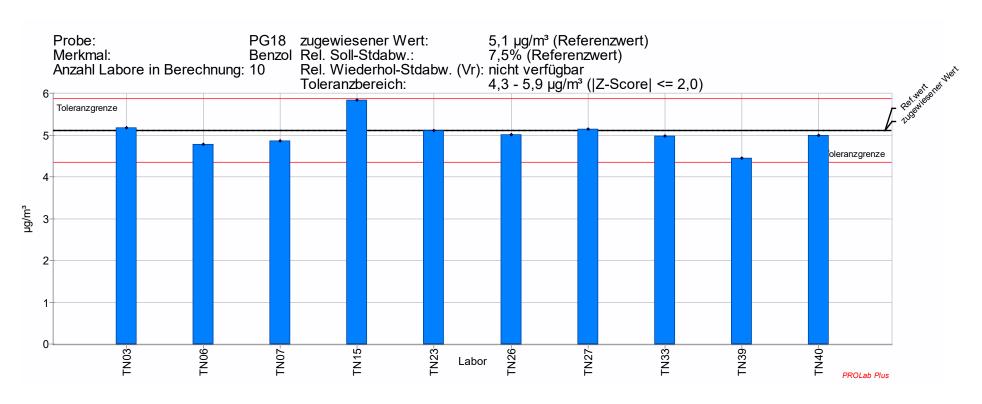
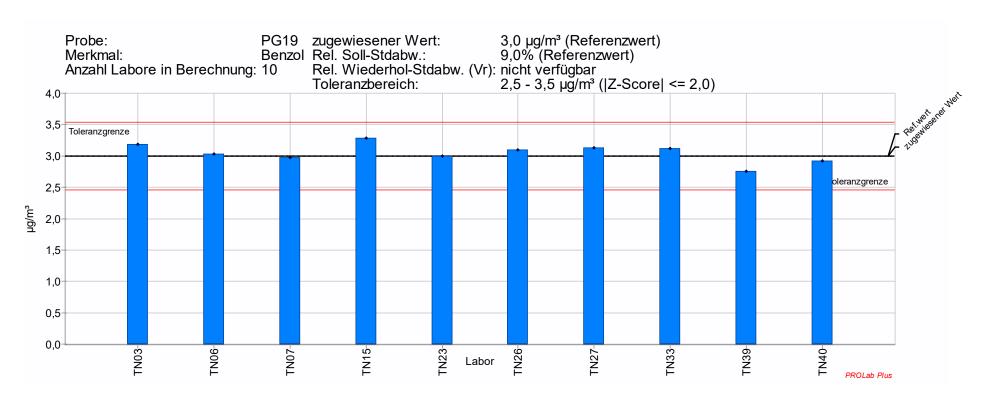

3.7 z-score-Auswertung Benzol

 Tabelle 10:
 z-score Auswertung Benzol


TN	PG 16	z- score	PG 17	z- score	PG 18	z- score	PG 19	z- score	PG 20	z- score
III	μg/m³	SCOILE	μg/m³	Score	μg/m³	Score	μg/m³	SCOILE	μg/m³	Score
TN03	1,2	0,3	2,2	0,3	5,2	0,2	3,2	0,7	7,7	1,0
TN06	1,2	0,4	2,2	0,2	4,8	-0,9	3,0	0,1	7,3	0,2
TN07	1,1	0,1	2,0	-0,2	4,9	-0,6	3,0	-0,1	7,2	0,0
TN15	1,2	0,3	2,2	0,4	5,8	1,9	3,3	1,0	7,9	1,4
TN23	1,1	0,0	2,0	-0,4	5,1	0,0	3,0	0,0	7,4	0,4
TN26	1,1	0,0	2,1	0,0	5,0	-0,2	3,1	0,4	7,4	0,4
TN27	1,1	0,1	2,1	0,2	5,1	0,1	3,1	0,5	7,7	1,0
TN33	1,1	0,1	2,1	0,0	5,0	-0,3	3,1	0,4	7,5	0,7
TN39	0,8	-1,1	1,7	-1,3	4,5	-1,7	2,8	-0,9	6,9	-0,6
TN40	1,1	-0,1	2,1	-0,1	5,0	-0,3	2,9	-0,3	7,4	0,5
Х	1,1		2,1		5,1		3,0		7,2	
σ_{pt}	0,3		0,3		0,4		0,3		0,5	
N	10		10		10		10		10	


Abbildung 13: Prüfgasangebot PG 16 – Komponente Benzol

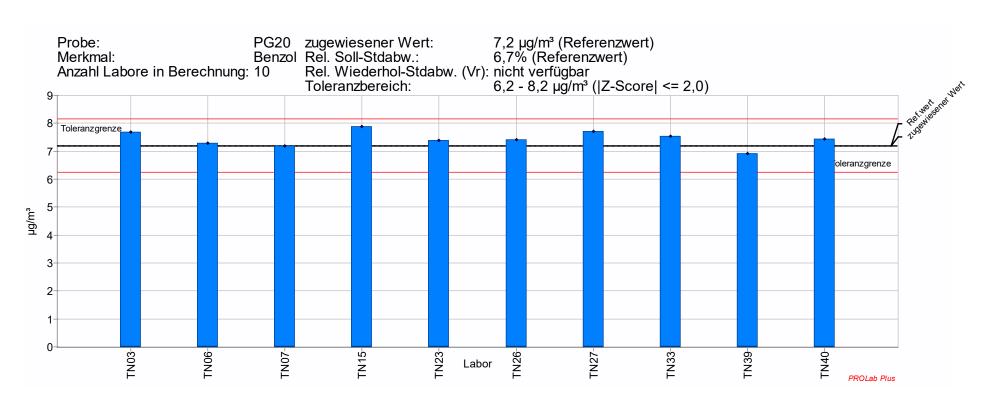

Abbildung 14: Prüfgasangebot PG 17 – Komponente Benzol

Abbildung 15: Prüfgasangebot PG 18 – Komponente Benzol

Abbildung 16: Prüfgasangebot PG 19 – Komponente Benzol

Abbildung 17: Prüfgasangebot PG 20 – Komponente Benzol

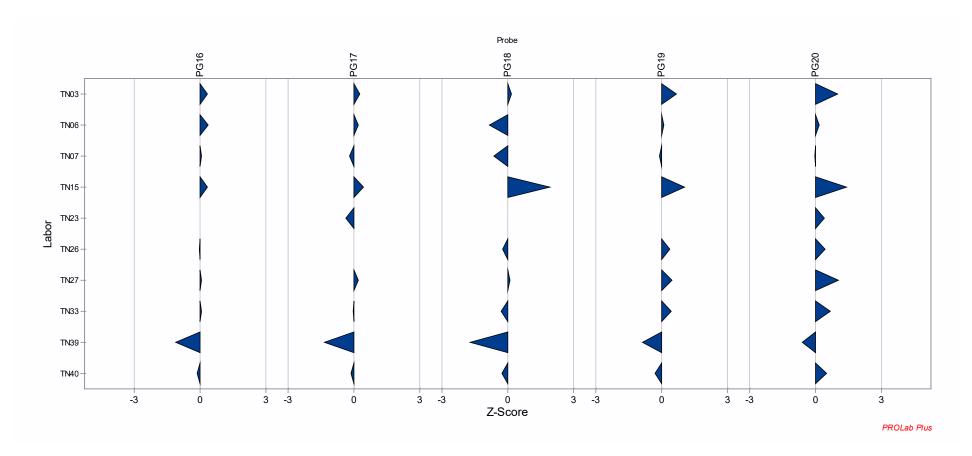


Abbildung 18: z-score Übersicht Benzol

4 Ergänzende Prüfgasangebote und Auswertungen

4.1 Messunsicherheiten der TN – E_n-Zahlen

Zusätzlich zu den Messergebnissen der Angebote des Bewertungsteils wurden die Messunsicherheiten der TN erfasst und, wo sie vorlagen, ausgewertet. Die Ermittlung der Messunsicherheit und die Angabe der erweiterten Messunsicherheit zu jedem Messergebnis ist Bestandteil der europäischen Richtlinien zur Bestimmung der anorganischen Gase. Daher wird zusätzlich zum z-score für die Beurteilung des Messwertes dessen Unsicherheit herangezogen und hierzu die sog. E_n-Zahl berechnet:

$$E_n = \frac{x - X}{\sqrt{U_x^2 + U_{ref}^2}}$$

x Konzentration des TN

X zugewiesener Wert (Sollwert)

U_x erweiterte Unsicherheit des TN-Wertes

U_{ref} erweiterte Unsicherheit des Vorgabewertes (Sollwert)

Da zur Berechnung der E_n-Zahl erweiterte Unsicherheiten verwendet werden, ist hier die Grenze von 1 für kritische Werte üblich.

Die vom TN angegebene Unsicherheit kann zusätzlich auf Plausibilität geprüft werden, indem diese kleiner oder gleich der Unsicherheitsanforderungen für Prüfgase der europäischen Richtlinien σ_p sind:

Tabelle 11: Präzisionsanforderungen an Null- und Prüfgase aus den CEN-Richtlinien

	σ _p =a⋅c+b						
Gas	а	b					
		nmol/mol					
SO ₂	0,022	1					
CO	0,024	100					
O_3	0,020	1					
NO	0,024	1					
NO ₂	0,020	1					

4.2 E_n-Zahlen Schwefeldioxid

 Tabelle 12:
 En-Zahlen und Standardunsicherheiten für die SO2-Bewertungsangebote

Prüfgas	F	PG 1		PG 2		PG 3		PG 4		PG 5	
TN	En	u(x) [µg/m³]									
TN01	0,4	5,4	0,3	2,3	0,1	1,3	-0,3	0,6	0,0	0,9	
TN02	0,1	3,3	-0,2	1,5	-0,3	1,1	-0,3	0,9	-0,4	0,9	
TN08	0,1	14,7	0,0	6,7	0,0	3,6	-0,1	2,0	-0,1	2,7	
TN09	-0,1	8,4	-0,1	3,7	-0,1	2,4	-0,1	1,7	0,1	2,0	
TN12	1,5	4,2	0,2	2,3	0,0	1,7	-0,2	1,3	-0,1	1,5	
TN17	-0,3	10,2	-0,1	4,3	0,1	2,5	0,5	1,2	0,3	1,8	
TN18	0,0	14,7	0,0	6,7	-0,1	3,6	-0,1	2,0	-0,1	2,7	
TN20	0,3	5,4	0,1	2,3	-0,1	1,3	-0,8	0,6	-0,3	0,9	
TN21	-0,1	6,2	0,0	2,6	0,2	1,4	0,7	0,6	0,4	1,0	
TN22	-0,1	16,7	-0,1	6,8	-0,1	3,8	-0,1	1,7	-0,1	2,7	
TN25	-0,6	14,4	-0,5	6,8	-0,5	4,8	-0,3	3,8	-0,3	4,2	
TN28	0,2	7,4	0,3	3,2	0,2	1,9	0,4	1,0	0,1	1,4	
TN30	0,0	13,6	0,1	6,4	0,0	4,4	0,0	3,5	0,0	3,9	
TN32	-0,1	15,9	-0,1	6,6	-0,1	3,6	0,0	1,6	-0,1	2,5	
TN34	-0,1	7,4	0,0	3,4	0,1	2,3	0,2	1,7	0,1	1,9	
TN35	-0,3	6,0	0,0	2,8	0,3	1,8	0,7	1,3	0,4	1,5	
TN36	1,2	4,2	0,5	2,3	0,5	1,7	0,6	1,3	0,5	1,5	
TN37	0,0	9,2	0,0	3,8	-0,1	2,2	0,0	1,1	-0,1	1,6	
TN38	-0,3	5,3	-0,2	2,7	-0,1	2,0	-0,1	1,7	-0,2	1,8	

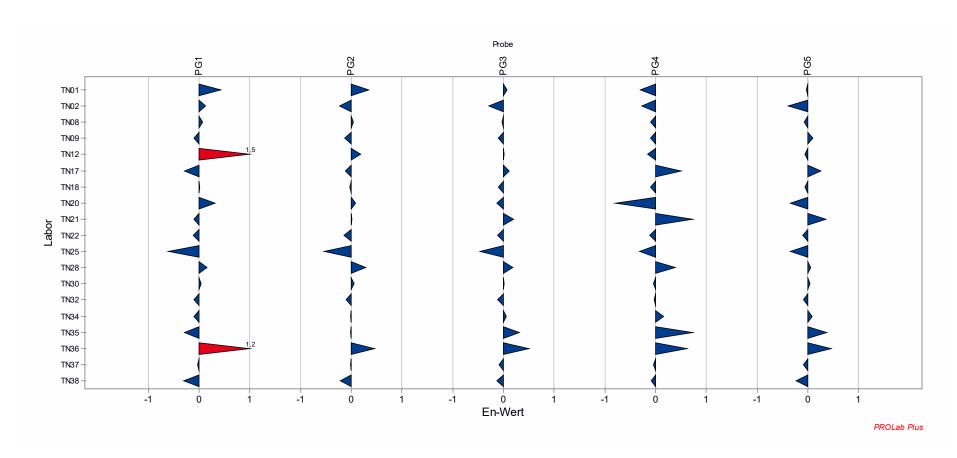
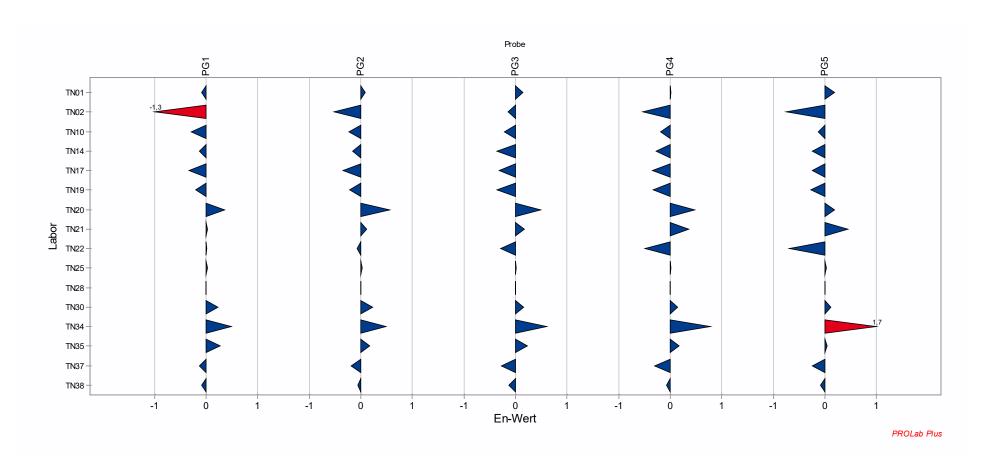



Abbildung 19: E_n-Zahlen Schwefeldioxid

4.3 E_n-Zahlen Kohlenmonoxid

 Tabelle 13:
 En-Zahlen und Standardunsicherheiten für die CO-Bewertungsangebote

Prüfgas	PG 1		PG 2		PG 3		PG 4		PG 5	
TN	En	u(x) mg/m³								
TN01	-0,10	0,11	0,10	0,06	0,10	0,04	0,00	0,03	0,20	0,02
TN02	-1,30	0,03	-0,50	0,02	-0,10	0,03	-0,50	0,03	-0,70	0,03
TN10	-0,30	0,17	-0,20	0,11	-0,20	0,09	-0,20	0,08	-0,10	0,08
TN14	-0,10	0,10	-0,20	0,06	-0,40	0,04	-0,30	0,04	-0,20	0,03
TN17	-0,30	0,19	-0,30	0,10	-0,30	0,06	-0,40	0,04	-0,20	0,02
TN19	-0,20	0,10	-0,20	0,06	-0,40	0,04	-0,30	0,04	-0,30	0,03
TN20	0,40	0,11	0,60	0,06	0,50	0,04	0,50	0,03	0,20	0,02
TN21	0,00	0,17	0,10	0,09	0,20	0,06	0,40	0,04	0,40	0,03
TN22	0,00	0,38	-0,10	0,20	-0,30	0,12	-0,50	0,08	-0,70	0,05
TN25	0,00	0,48	0,00	0,39	0,00	0,36	0,00	0,36	0,00	0,35
TN28	0,00	349,80	0,00	182,00	0,00	121,70	0,00	92,90	0,00	70,80
TN30	0,20	0,29	0,20	0,16	0,20	0,10	0,10	0,08	0,10	0,05
TN34	0,50	0,12	0,50	0,06	0,60	0,04	0,80	0,03	1,70	0,02
TN35	0,30	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,00	0,20
TN37	-0,10	0,15	-0,20	0,08	-0,30	0,05	-0,30	0,03	-0,20	0,02
TN38	-0,10	0,11	-0,10	0,08	-0,10	0,07	-0,10	0,07	-0,10	0,07

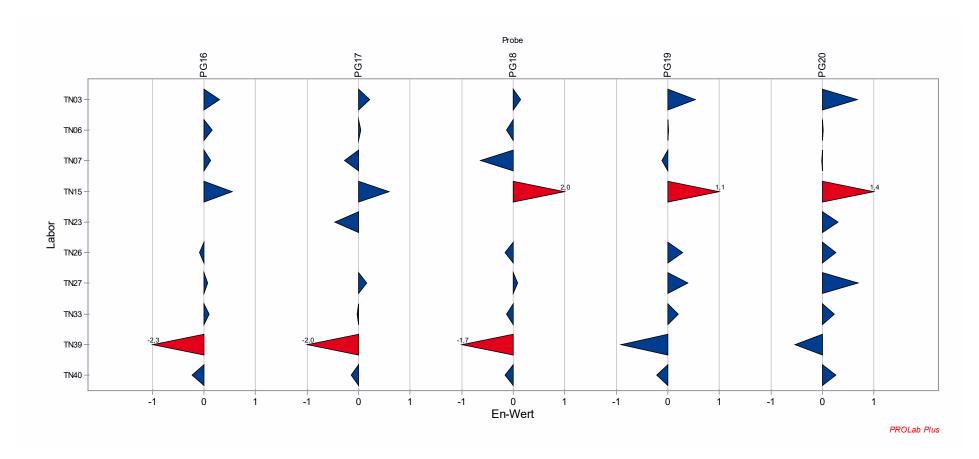


Abbildung 20: E_n-Zahlen Kohlenmonoxid

4.4 E_n-Zahlen Benzol

 Tabelle 14:
 En-Zahlen und Standardunsicherheiten für die Benzol-Bewertungsangebote

Prüfgas	PG 16		PG 17		PG 18		PG 19		PG 20	
TN	En	u(x) [µg/m³]								
TN03	0,3	0,1	0,2	0,1	0,1	0,2	0,5	0,1	0,7	0,3
TN06	0,2	0,3	0,0	0,6	-0,1	1,3	0,0	0,8	0,0	1,9
TN07	0,1	0,1	-0,3	0,1	-0,6	0,1	-0,1	0,1	0,0	0,2
TN15	0,5	0,1	0,6	0,1	2,0	0,1	1,1	0,1	1,4	0,2
TN23	0,0	0,1	-0,5	0,1	0,0	0,2	0,0	0,1	0,3	0,3
TN26	-0,1	0,1	0,0	0,1	-0,2	0,3	0,3	0,2	0,3	0,4
TN27	0,1	0,1	0,2	0,1	0,1	0,2	0,4	0,1	0,7	0,3
TN33	0,1	0,1	0,0	0,2	-0,1	0,5	0,2	0,3	0,2	0,7
TN39	-2,3	0,1	-2,0	0,1	-1,7	0,1	-0,9	0,1	-0,5	0,2
TN40	-0,2	0,1	-0,1	0,1	-0,2	0,3	-0,2	0,2	0,3	0,4

Abbildung 21: E_n-Zahlen Benzol

4.5 Querempfindlichkeiten

Zur Ermittlung der Querempfindlichkeiten im Bereich der Außenluftkonzentration wurden für die Komponente Benzol eine Konzentration von 5 μ g/m³ und für Schwefeldioxid von 30 μ g/m³ und 100 μ g/m³ gewählt. Die Prüfgase, ohne den Zusatz von Störkomponenten, wurden jeweils vor und nach den Angeboten der Störkomponenten mit gleicher Konzentration dosiert (sog. bracketing). Somit konnte die konstante Dosierung gezeigt werden. Die Konzentrationen vor und nach den Angeboten zur Ermittlung der Querempfindlichkeit wurden zur Berechnung der Querempfindlichkeit zusammengefasst.

Für die Komponente Schwefeldioxid wurde die Querempfindlichkeit auf Wasserdampf (PG 7 bis PG 9) und Stickstoffmonoxid (PG 11 bis PG 13) bei einer Schwefeldioxidkonzentration von jeweils 30 μ g/m³ und 100 μ g/m³ untersucht. Die Messwerte der Prüfgasangebote PG 4 und PG 14 wurden zur Probe P003 und die Angebote PG 6 und PG 10 zur Probe P004 zusammengefasst. Nachfolgende Abbildung 24 bis Abbildung 35 zeigen jeweils die gemessenen Konzentrationen des Querempfindlichkeitsangebotes (siehe 1.2 Zeitplan) und die Differenzen zum störkompontenfreien Prüfgasangebot. Die Angebote wurden robust ausgewertet und enthalten zusätzlich zu den Messwerten die Referenzwerte des störkompontenfreien Prüfgases sowie dessen Unsicherheitsbereich als grünes Band. Bei den Differenzen handelt es sich um die Differenz des Messwertes des jeweiligen TN zum Messwert des störkompontenfreien Prüfgasangebotes.

Bei der Komponente Benzol wurde analog vorgegangen. Die Prüfgasangebote PG 18 und PG 25 wurden zur Probe P005 zusammengefasst. Nachfolgende Abbildung 37 bis Abbildung 42 zeigen jeweils die gemessenen Konzentrationen des Querempfindlichkeitsangebotes (siehe 1.2 Zeitplan) und die Differenzen zum störkompontenfreien Prüfgasangebot. Die Angebote wurden robust ausgewertet und enthalten zusätzlich zu den Messwerten die Referenzwerte des störkompontenfreien Prüfgases sowie dessen Unsicherheitsbereich als grünes Band. Bei den Differenzen handelt es sich um die Differenz des Messwertes des jeweiligen TN zum Messwert des störkompontenfreien Prüfgasangebotes.

4.5.1 Schwefeldioxid

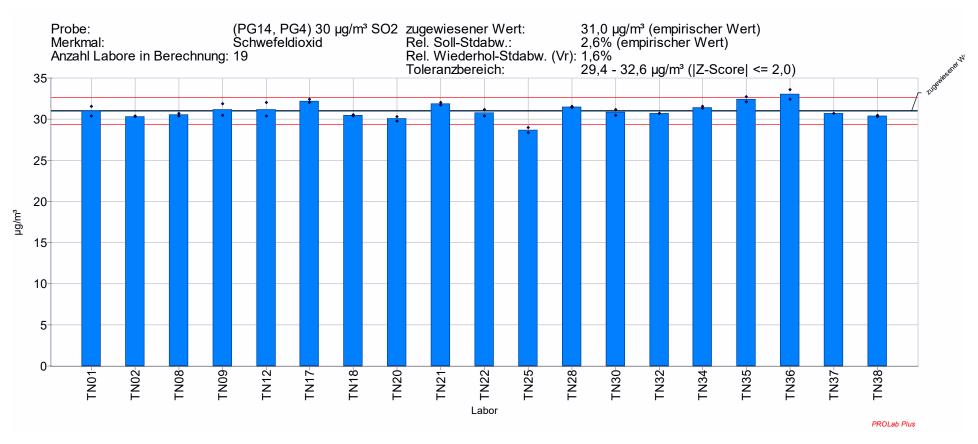


Abbildung 22: Probe P003: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 4 und PG 14 – ca. 30 µg/m³ Schwefeldioxid

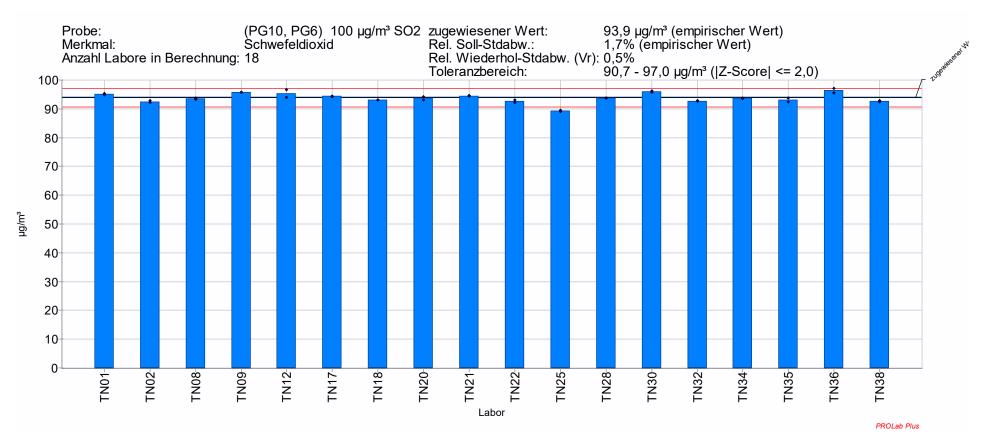


Abbildung 23: Probe P004: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 6 und PG 10 – ca. 100 µg/m³ Schwefeldioxid

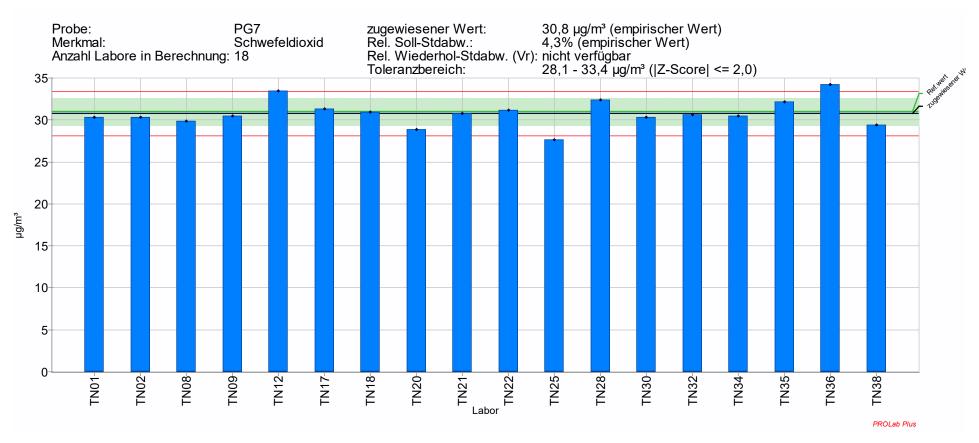


Abbildung 24: Prüfgasangebot PG 7: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid-Messung (SO₂ ca. 30 μg/m³) gegenüber Wasserdampf 4 mmol/mol H₂O (ca. 15 % rel. Feuchte)

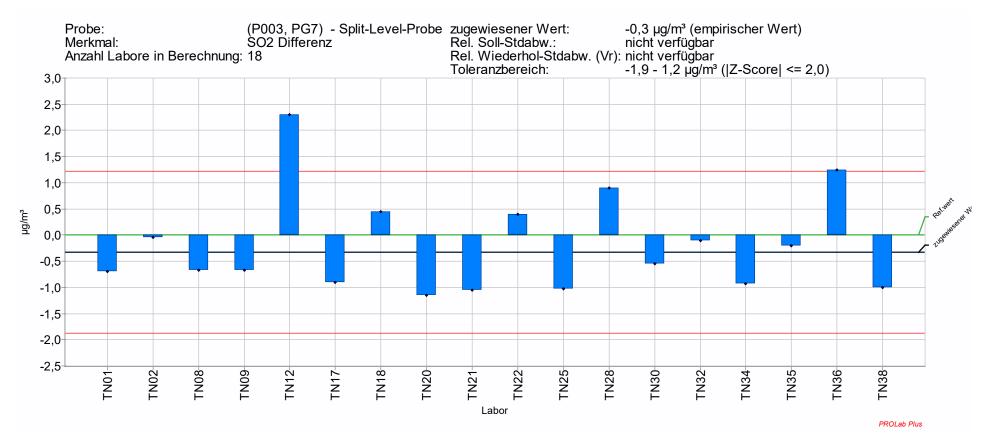


Abbildung 25: Querempfindlichkeit beim Prüfgasangebot PG 7 der Schwefeldioxid-Messung (SO₂ ca. 30 μg/m³) gegenüber 4 mmol/mol Wasserdampf (ca. 15 % rel. Feuchte)

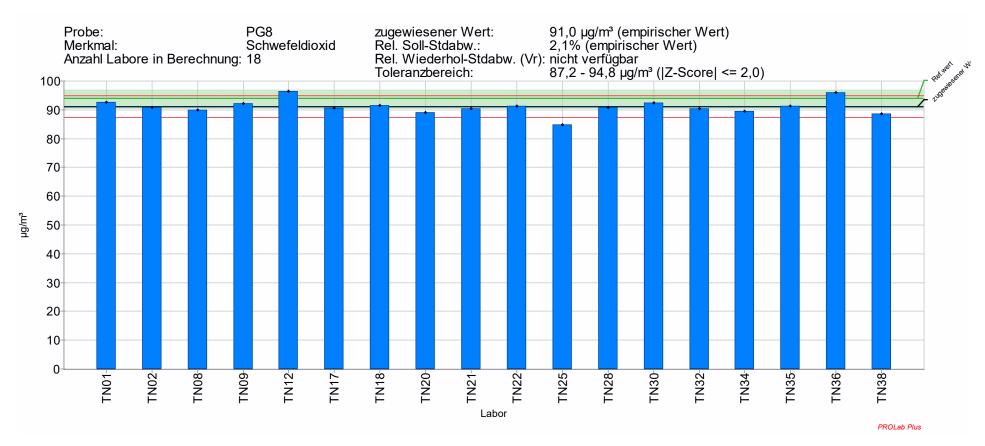


Abbildung 26: Prüfgasangebot PG 8: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 100 μg/m³ gegenüber Wasserdampf 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)

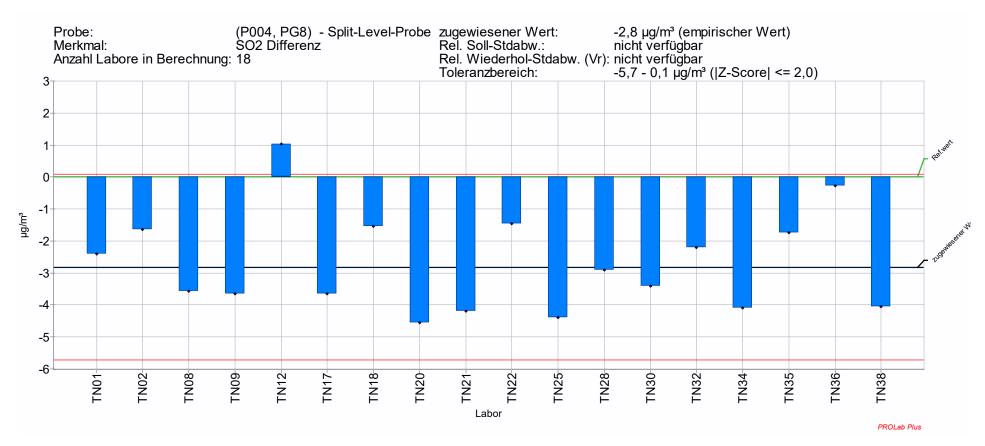


Abbildung 27: Querempfindlichkeit beim Prüfgasangebot PG 8 der Schwefeldioxid-Konzentration SO₂ ca. 100 μg/m³ gegenüber Wasserdampf 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)

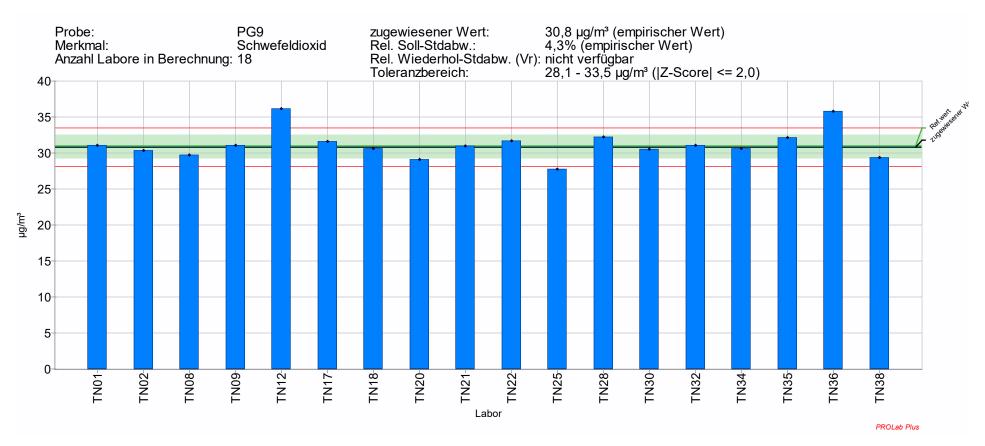


Abbildung 28: Prüfgasangebot PG 9: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Wasserdampf 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)

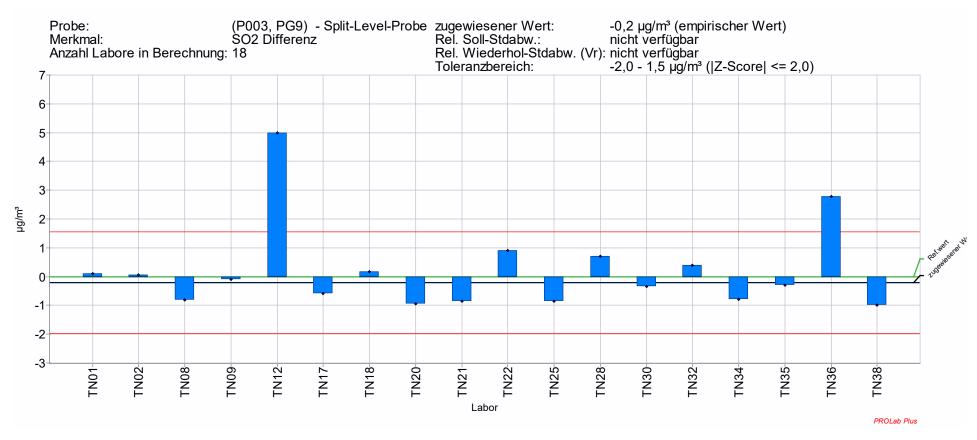


Abbildung 29: Prüfgasangebot PG 9: Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Wasserdampf 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)

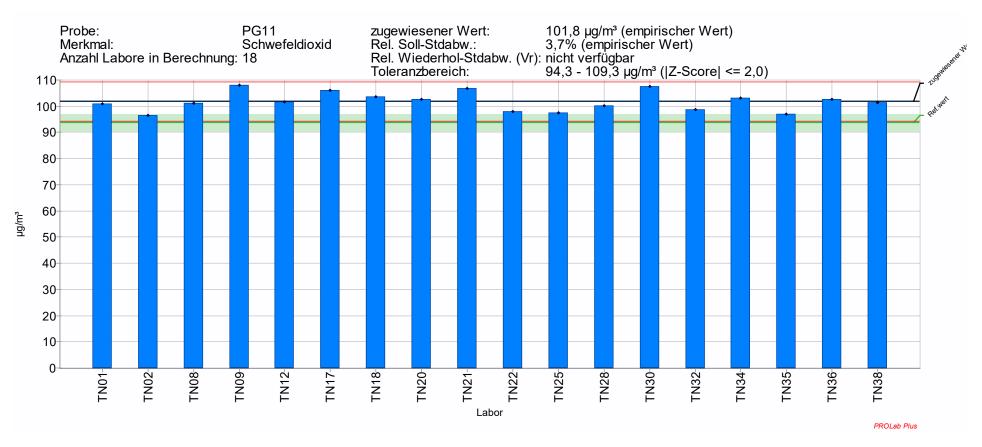


Abbildung 30: Prüfgasangebot PG 11 Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 100 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)

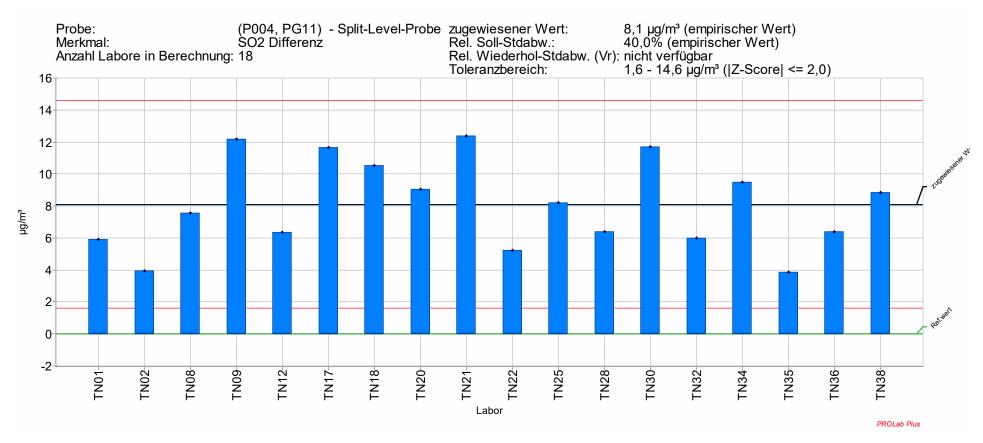


Abbildung 31: Prüfgasangebot PG 11: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 100 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)

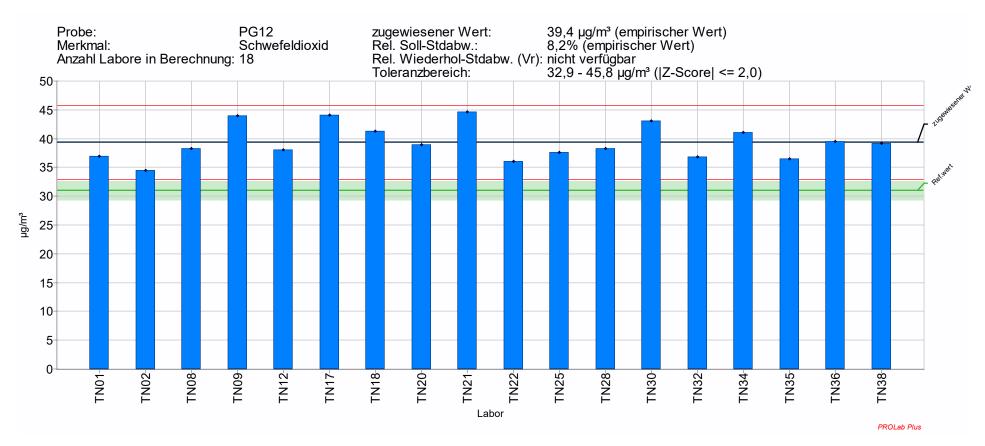


Abbildung 32: Prüfgasangebot PG 12: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)

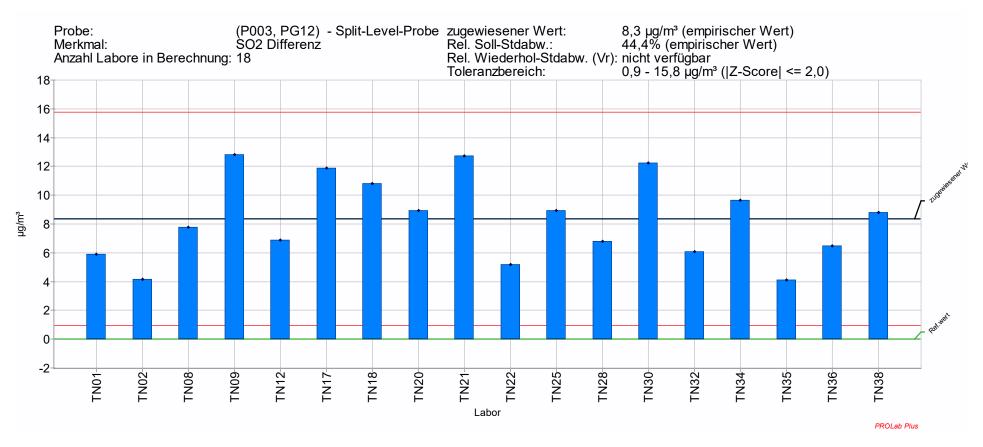


Abbildung 33: Prüfgasangebot PG 12: Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)

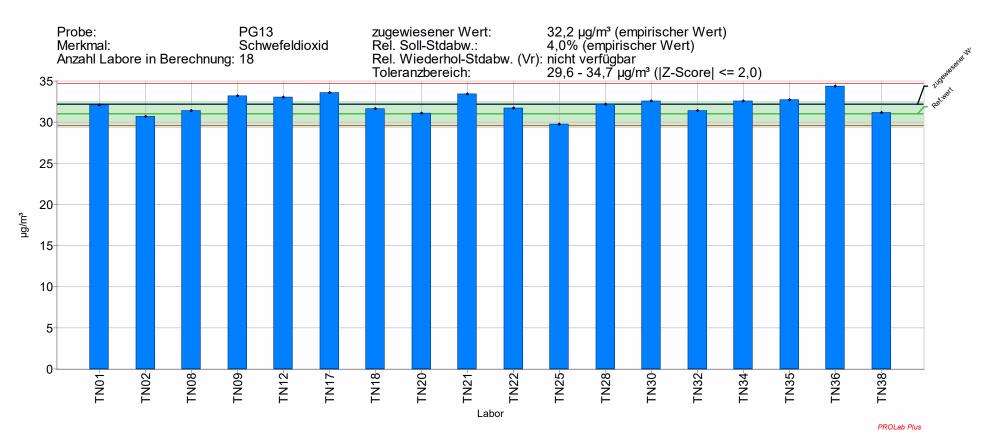


Abbildung 34: Prüfgasangebot PG 13: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 50 nmol/mol)

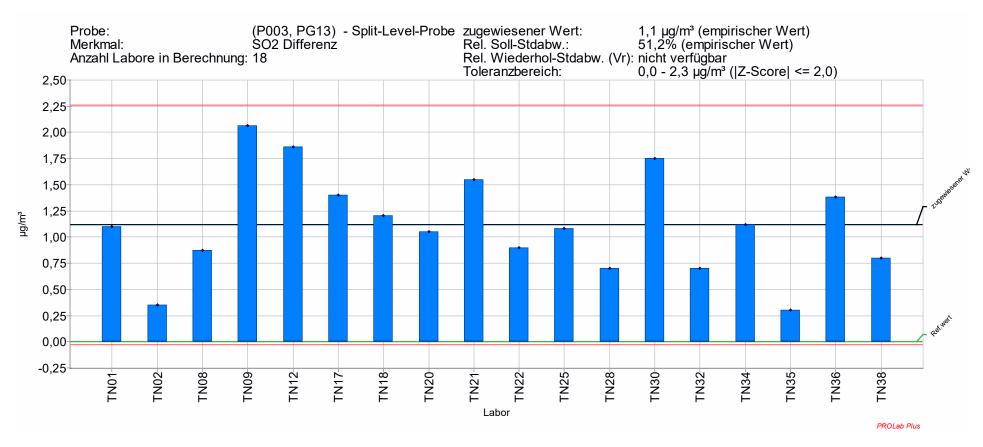


Abbildung 35: Prüfgasangebot PG 13: Querempfindlichkeit der Schwefeldioxid Messung SO₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 50 nmol/mol)

4.5.2 Benzol

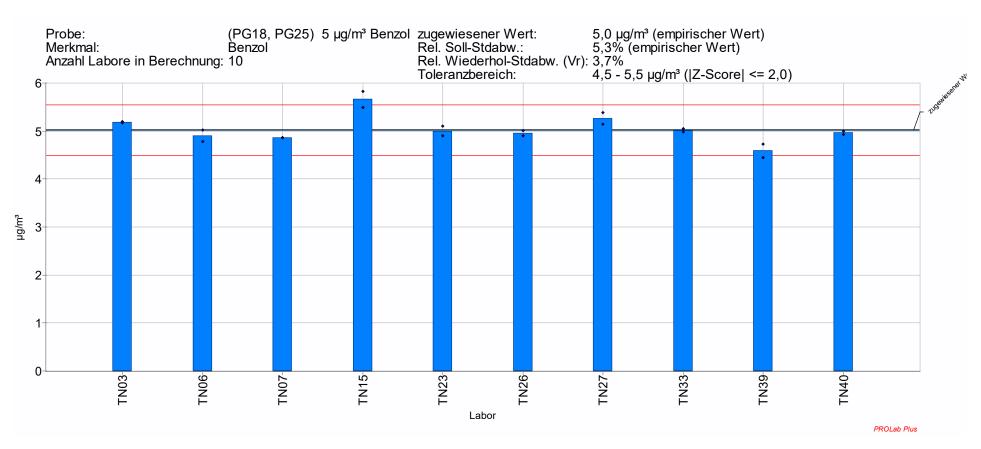


Abbildung 36: Probe P005: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 18 und PG 25 – ca. 5 μg/m³ Benzol

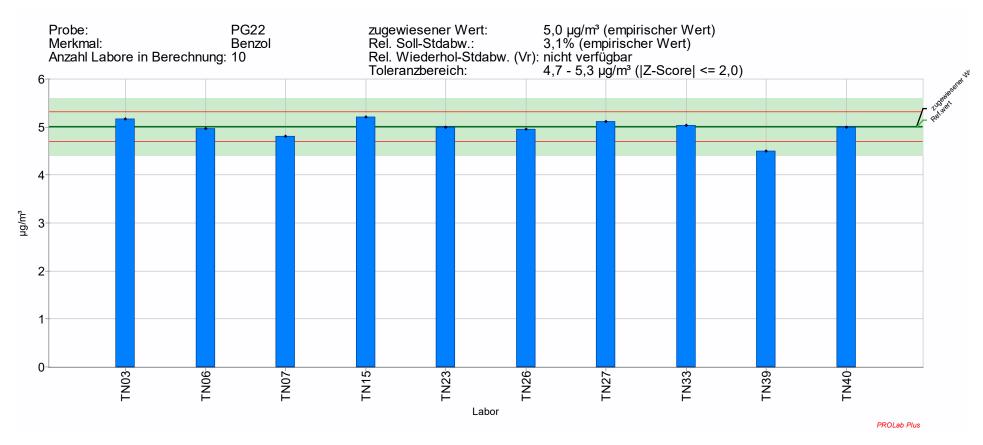


Abbildung 37: Prüfgasangebot PG 22: Vergleich der Benzol-Konzentration zur Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 4 mmol/mol H₂O (ca. 15 % rel. Feuchte)

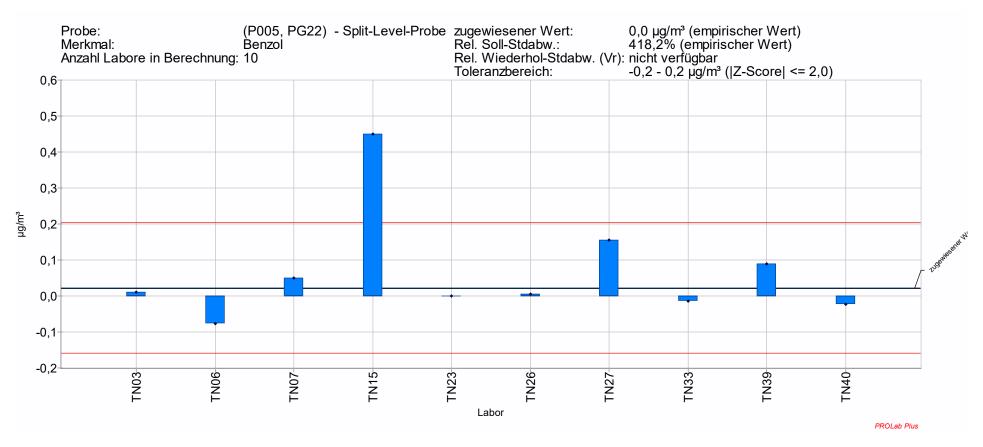


Abbildung 38: Prüfgasangebot PG 22: Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 4 mmol/mol H₂O (ca. 15 % rel. Feuchte)

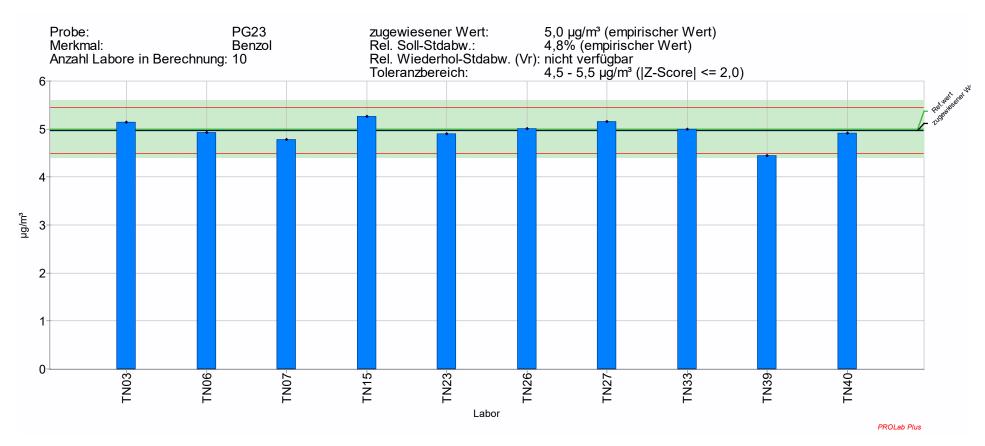


Abbildung 39: Prüfgasangebot PG 23: Vergleich der Benzol-Konzentration zur Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)

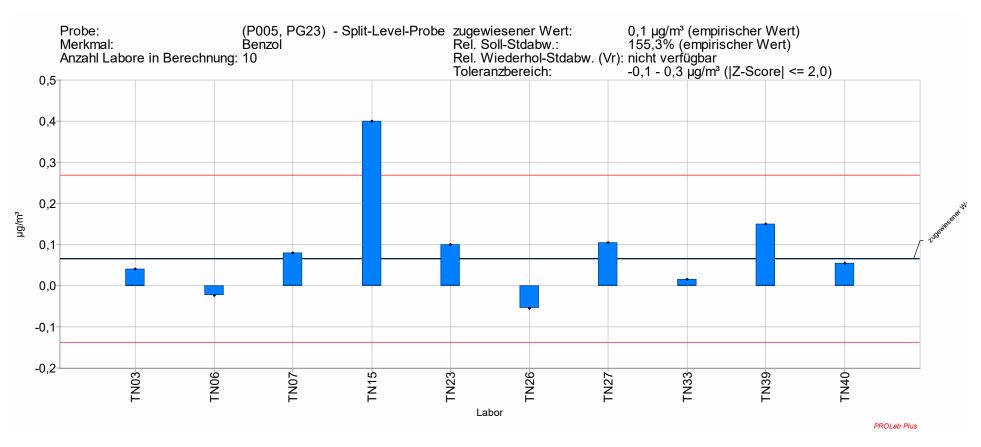
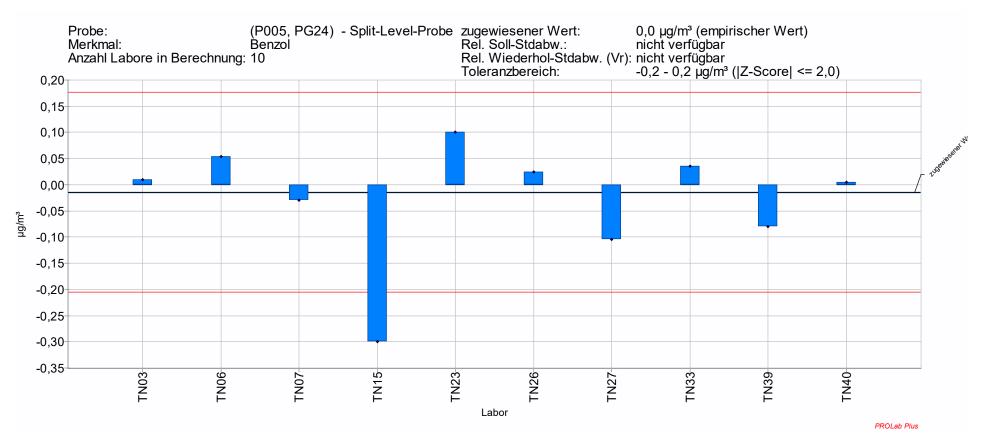



Abbildung 40: Prüfgasangebot PG 23: Querempfindlichkeit bei ca. 5 µg/m³ Benzol gegenüber 10 mmol/mol H2O (ca. 40 % rel. Feuchte)

Abbildung 41: Prüfgasangebot PG 24: Vergleich der Benzol-Konzentration zur Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 180 μg/m³ Ozon

Abbildung 42: Prüfgasangebot PG 24: Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 180 μg/m³ Ozon

4.6 Vergleichsmessungen ORSA-Röhrchen

Begleitend zum Ringversuch wurden an interessierte TN zusätzlich mit Prüfgas beaufschlagte Aktivkohleröhrchen verteilt. Hierbei handelt es sich um sog. ORSA-Sammler. Diese werden als Passivsammler für BTEX in der Außenluft verwendet. Die Proben wurden durch das LANUV NRW im organischen Labor des Fachbereich 43 mit Prüfgas homogen belegt.

Hergestellt wurden Proben in zwei unterschiedlichen Konzentrationen. Die Proben wurden abschließend kodiert, um eine Zuordnung auszuschließen. Jede(r) TN erhielt 4 Proben mit jeweils 2 Proben pro Prüfgas-Konzentration. Die Analysenwerte wurden nach der Abgabe durch die TN als Doppelbestimmung zugeordnet.

Der zugewiesene Wert (X) und die Standardabweichung der Eignungsbekanntgabe σ_{pt} wurden aus dem robusten Mittelwert X* und der robusten Standardabweichung s* nach DIN ISO 13528 Anhang C berechnet.

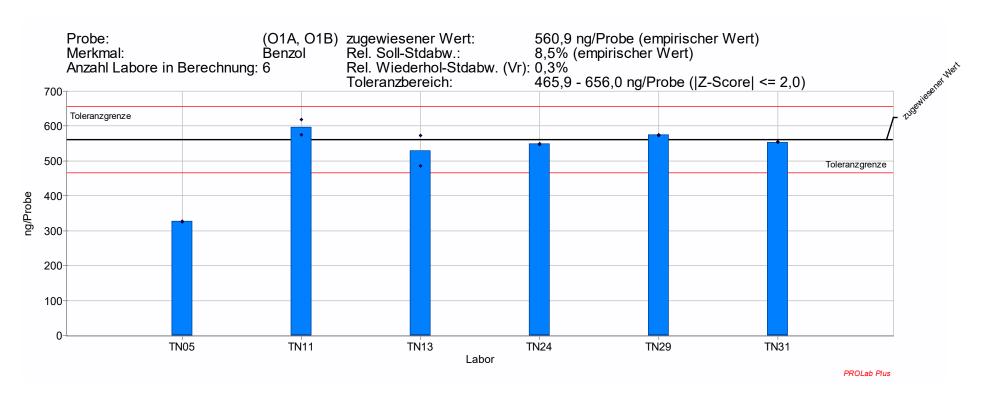
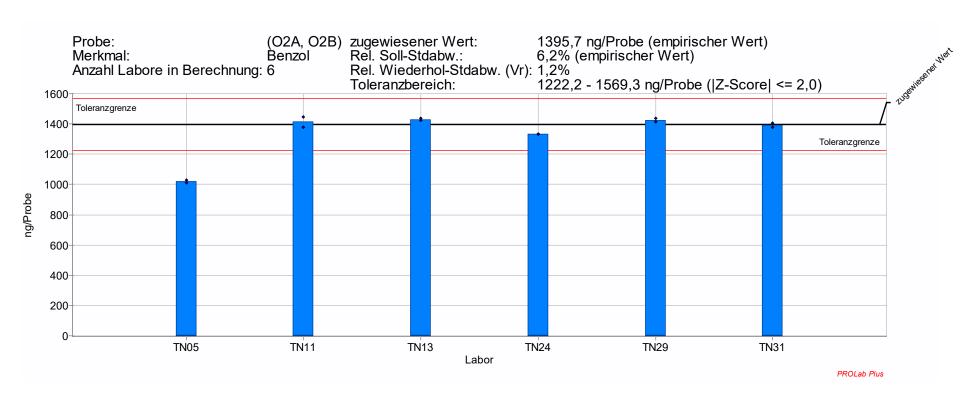



Abbildung 43: Robuste Auswertung Benzol – Probe ORSA Prüfgas 1

Abbildung 44: Robuste Auswertung Benzol – Probe ORSA Prüfgas 2

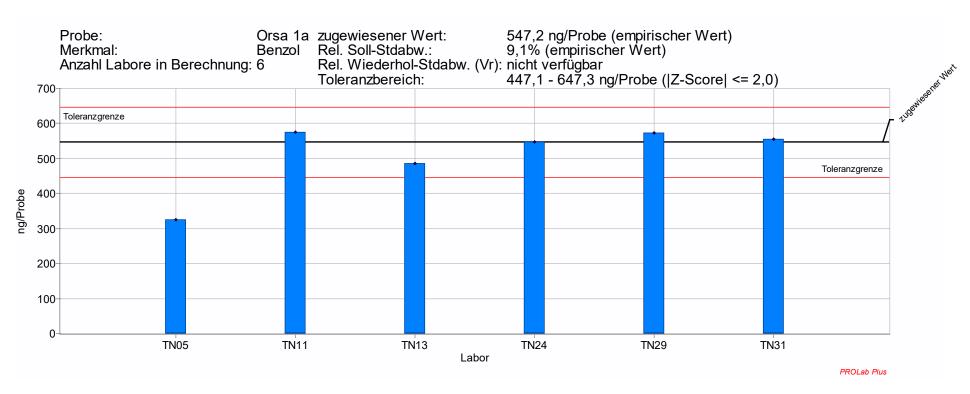
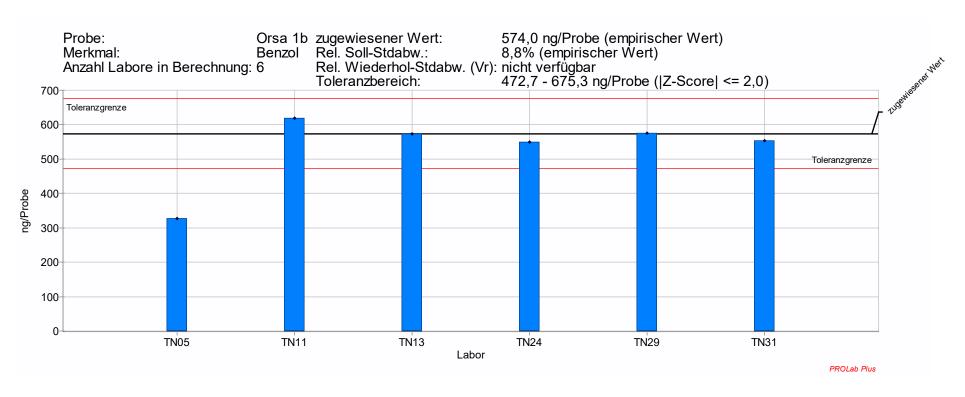



Abbildung 45: Robuste Auswertung Benzol – Probe ORSA Prüfgas 1 – Teilprobe A

Abbildung 46: Robuste Auswertung Benzol – Probe ORSA Prüfgas 1 – Teilprobe B

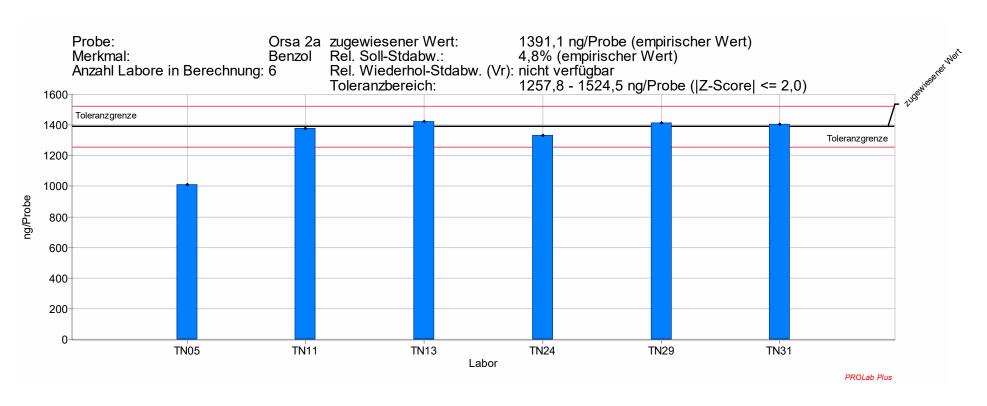
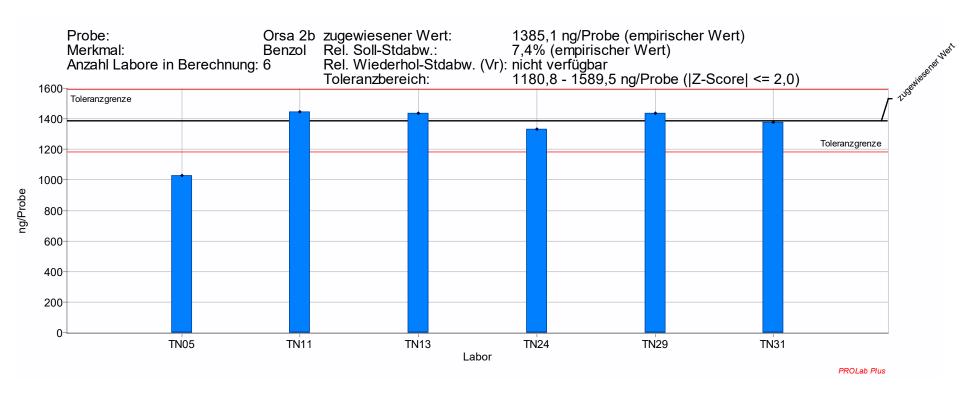



Abbildung 47: Robuste Auswertung Benzol – Probe ORSA Prüfgas 2 – Teilprobe A

Abbildung 48: Robuste Auswertung Benzol – Probe ORSA Prüfgas 2 – Teilprobe B

5 Anhang

5.1 ORSA-Vergleichsmessungen

Tabelle 15: Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 (1 A, 1 B)

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	326,2	395,3	270,8	0,1	408,1
TN11	597,8	571,9	390,3	327,1	474,6
TN13	529,5	752,2	589,8	469,7	538,1
TN24	548,5	719,0	544,0	427,0	675,0
TN29	575,0	748,5	501,0	412,5	648,0
TN31	554,0	746,1	574,4	446,6	649,2
Х	560,9	719,4	480,7	416,6	580,9
σ_{pt}	47,5	58,9	130,5	82,8	61,7
N	6	6	6	6	6

Tabelle 16: Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 (2 A, 2 B)

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	1018,0	1204,0	906,5	425,3	1194,6
TN11	1413,0	1464,5	978,4	834,2	1265,5
TN13	1428,4	1878,2	1486,8	1211,0	1701,9
TN24	1334,0	1750,5	1299,0	1039,0	1629,0
TN29	1425,5	1860,5	1365,0	1095,0	1702,0
TN31	1390,6	1859,3	1445,0	1107,8	1639,5
Х	1395,7	1692,5	1249,9	982,8	1556,9
σ_{pt}	86,8	233,7	216,4	248,6	148,3
N	6	6	6	6	6

Tabelle 17: Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 – Teilprobe 1 A

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	325,5	408,9	287,4	0,1	434,2
TN11	576,0	566,5	404,1	326,2	474,0
TN13	486,8	737,2	576,5	466,3	675,4
TN24	548,0	714,0	523,0	424,0	673,0
TN29	574,0	730,0	486,0	397,0	626,0
TN31	554,6	741,2	568,6	444,4	649,4
X	547,2	726,1	474,3	405,6	607,0
σ_{pt}	50,0	39,5	134,4	96,8	65,3
N	6	6	6	6	6

Tabelle 18: Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 — Teilprobe 1 B

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	327,0	381,7	254,2	0,1	382,1
TN11	619,6	577,2	376,5	328,0	475,3
TN13	572,2	767,3	603,2	473,1	400,8
TN24	549,0	724,0	565,0	430,0	677,0
TN29	576,0	767,0	516,0	428,0	670,0
TN31	553,3	751,0	580,2	448,9	649,0
X	574,0	726,5	493,0	421,6	551,9
σ_{pt}	50,7	68,8	117,2	64,3	88,0
N	6	6	6	6	6

Tabelle 19: Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 – Teilprobe 2 A

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	1009,0	1216,2	926,3	438,1	1217,3
TN11	1378,0	1465,4	993,0	862,3	1309,3
TN13	1422,2	1868,3	1476,6	1214,1	1697,5
TN24	1334,0	1747,0	1302,0	1043,0	1628,0
TN29	1416,0	1864,0	1360,0	1091,0	1697,0
TN31	1405,4	1897,8	1448,9	1124,2	1639,6
Х	1391,1	1689,9	1252,3	1001,5	1564,6
σ_{pt}	66,7	262,1	212,7	218,0	134,6
N	6	6	6	6	6

Tabelle 20: Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 – Teilprobe 2 B

	Benzol	Toluol	o-Xylol	m-/p-Xylol	Ethylbenzol
TN	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN05	1027,0	1191,8	886,8	412,4	1171,8
TN11	1447,9	1463,5	963,7	806,1	1221,8
TN13	1434,6	1888,1	1496,9	1207,9	1706,3
TN24	1334,0	1754,0	1296,0	1035,0	1630,0
TN29	1435,0	1857,0	1370,0	1099,0	1707,0
TN31	1375,8	1820,9	1441,1	1091,4	1639,4
X	1385,1	1707,9	1254,0	974,1	1559,0
σ_{pt}	102,2	168,9	198,3	245,9	148,9
N	6	6	6	6	6

5.2 Zusätzliche organische Komponenten

Tabelle 21: Toluol

	PG 16	PG17	PG 18	PG 19	PG 20	PG 21	PG 22	PG 23	PG 24	PG 25
TN	μg/m³									
TN03	4,2	5,6	11,3	7,7	17,1	2,1	12,4	12,4	12,3	11,7
TN06	2,8	5,8	11,8	7,7	16,9		11,8	11,9	12,0	15,6
TN07	2,6	4,5	10,4	6,5	15,1	0,5	10,3	10,4	10,4	10,4
TN15	2,5	4,8	11,4	6,9	16,7	0,1	11,3	11,3	9,0	11,8
TN23	5,3	6,4	11,6	7,5	15,9	2,7	12,4	13,2	13,6	13,5
TN26	3,8	5,5	11,3	7,2	16,3	1,3	12,0	12,4	12,4	12,6
TN27	4,2	5,6	11,5	7,8	17,1	2,1	12,5	12,7	12,4	11,9
TN33	2,3	4,3	10,3	6,5	15,8	0,1	10,7	10,6	10,2	10,6
TN39	2,3	4,0	9,8	6,2	15,1	0,7	10,1	10,1	10,3	10,6
TN40	2,6	4,6	11,1	7,4	17,9	0,8	11,8	12,7	17,3	12,2

Tabelle 22: o-Xylol

	PG 16	PG17	PG 18	PG 19	PG 20	PG 21	PG 22	PG 23	PG 24	PG 25
TN	μg/m³									
TN03	1,0	1,9	4,7	2,9	7,0	0,0	4,7	4,7	5,5	4,8
TN06	1,0	1,9	4,4	2,8	6,7		4,5	4,5	4,5	4,5
TN07										
TN15	1,2	2,2	5,2	3,2	7,6	0,0	5,1	5,1	5,1	5,4
TN23	1,1	1,8	4,4	2,7	6,6	0,1	4,8	4,4	4,4	4,5
TN26	0,9	1,8	4,4	2,8	6,7	0,1	4,4	4,5	4,2	4,5
TN27	1,1	2,0	4,9	3,0	7,2	0,1	4,9	4,9	5,0	5,0
TN33	1,0	1,9	4,5	2,9	7,0	0,0	4,7	4,6	4,2	4,6
TN39	0,7	1,4	3,9	2,3	5,8	0,0	3,7	3,7	3,9	4,0
TN40	1,0	1,8	4,5	2,5	6,8	< 0,1	4,6	4,3	4,3	4,5

Tabelle 23: m-/p-Xylol

	PG 16	PG17	PG 18	PG 19	PG 20	PG 21	PG 22	PG 23	PG 24	PG 25
TN	μg/m³									
TN03	1,2	2,2	5,4	3,3	8,0	0,1	5,3	5,3	5,4	5,4
TN06	1,3	2,3	5,4	3,5	8,1		5,4	5,4	5,5	5,4
TN07	1,1	2,2	5,2	3,3	7,6	0,2	5,0	5,1	5,1	5,0
TN15	1,3	2,5	5,9	3,6	8,8	0,0	5,9	5,9	4,5	6,0
TN23	1,1	2,1	5,0	3,4	6,7	0,1	4,7	5,1	4,7	5,0
TN26	1,0	1,9	5,3	3,1	8,1	0,2	5,4	5,5	5,1	5,4
TN27	1,1	2,2	5,4	3,4	8,1	0,0	5,4	5,5	5,4	5,5
TN33	1,1	2,1	4,9	3,2	7,7	0,0	5,2	5,1	4,7	5,1
TN39	0,8	1,5	4,1	2,5	6,9	0,0	4,0	4,1	4,1	4,4
TN40	1,1	2,1	5,2	3,0	7,8	< 0,1	5,3	5,0	5,1	5,2

Tabelle 24: Ethylbenzol

	PG 16	PG 17	PG 18	PG 19	PG 20	PG 21	PG 22	PG 23	PG 24	PG 25
TN	μg/m³									
TN03										
TN06	0,9	1,6	3,8	2,4	5,7		3,8	3,8	3,8	3,8
TN07										
TN15	1,0	1,9	4,4	2,7	6,5	0,0	4,4	4,4	4,6	4,5
TN23	1,0	1,7	3,7	2,7	5,1	0,1	4,0	3,3	3,7	3,7
TN26	0,8	1,5	4,0	2,4	6,1	0,0	4,2	4,2	3,8	4,1
TN27										
TN33	0,8	1,6	3,6	2,4	5,7	0,0	3,9	3,9	3,3	3,8
TN39	0,6	1,2	3,2	1,9	4,9	0,0	3,1	3,1	3,1	3,2
TN40	0,8	1,6	3,8	2,2	5,6	< 0,1	3,9	3,7	3,6	3,8

5.3 Ergänzende Prüfgasangebote – anorganische Gase

5.3.1 Schwefeldioxid

 Tabelle 25:
 TN-Messwerte der ergänzenden Prüfgasangebote für Schwefeldioxid

	PG 6	PG 7	PG 8	PG 9	PG 10	PG 11	PG 12	PG 13	PG 14	PG 15
TN	μg/m³									
TN01	94,8	30,3	92,7	31,1	95,4	101	36,9	32,1	31,6	-0,2
TN02	92,8	30,3	90,8	30,4	92,1	96,4	34,5	30,7	30,4	0
TN08	93,7	29,9	90	29,7	93,4	101,1	38,3	31,4	30,7	-0,2
TN09	95,8	30,5	92,1	31	95,8	107,9	44	33,2	31,8	1,2
TN12	94	33,5	96,4	36,2	96,7	101,7	38,1	33,1	32	0,6
TN17	94,5	31,3	90,7	31,6	94,2	106	44,1	33,6	32,4	2,3
TN18	93,1	30,9	91,5	30,6	93	103,6	41,3	31,7	30,6	-0,3
TN20	94,2	28,9	89,1	29,1	93,1	102,7	39	31,1	30,3	0,5
TN21	94,6	30,8	90,3	31	94,4	106,9	44,6	33,4	32	1,6
TN22	92,2	31,2	91,2	31,7	93,1	97,9	36	31,7	31,2	0,6
TN25	89,5	27,6	84,9	27,8	89	97,5	37,6	29,7	29	-0,2
TN28	93,8	32,4	90,9	32,2	93,8	100,2	38,3	32,2	31,4	0,3
TN30	96,1	30,3	92,5	30,5	95,7	107,6	43,1	32,6	31,2	0,1
TN32	92,8	30,6	90,5	31,1	92,6	98,7	36,8	31,4	30,7	0,4
TN34	93,8	30,5	89,6	30,6	93,6	103,2	41,1	32,5	31,6	1
TN35	93,7	32,2	91,3	32,1	92,4	96,9	36,5	32,7	32,1	2,1
TN36	95,5	34,3	96,1	35,8	97,1	102,7	39,5	34,4	33,6	2,5
TN38	92,9	29,4	88,6	29,4	92,4	101,5	39,2	31,2	30,3	0,5

5.3.2 Kohlenmonoxid

 Tabelle 26:
 TN-Messwerte der ergänzenden Prüfgasangebote für Kohlenmonoxid

	PG 14	PG 15
TN	mg/m³	mg/m³
TN01	1,72	-0,08
TN02	1,8	0
TN10	1,8	0
TN14	1,81	0,01
TN17	1,83	-0,01
TN19	1,79	-0,01
TN20	1,79	-0,05
TN21	1,87	0,03
TN22	1,8	-0,02
TN25	1,84	0,02
TN28	1,84	0,05
TN30	1,86	0,01
TN34	1,89	0,07
TN35	1,9	0
TN38	1,82	0,01

Tabellenverzeichnis

Tabelle 1:	Anzahl der TN-Verfahren	4
Tabelle 2:	TN-Liste	6
Tabelle 3:	Eingesetzte Messverfahren	7
Tabelle 4:	Kriterien für die Leistungsfähigkeit	12
Tabelle 5:	Prüfgasangebote Bewertungsteil Benzol	13
Tabelle 6:	Prüfgasangebote Bewertungsteil Schwefeldioxid und Kohlenmonoxid	13
Tabelle 7:	Kenngrößen der TN-Messwerte	14
Tabelle 8:	z-score-Auswertung Schwefeldioxid	15
Tabelle 9:	z-score-Auswertung Kohlenmonoxid	22
Tabelle 10:	z-score Auswertung Benzol	29
Tabelle 11:	Präzisionsanforderungen an Null- und Prüfgase aus den CEN- Richtlinien	36
Tabelle 12:	E _n -Zahlen und Standardunsicherheiten für die SO ₂ - Bewertungsangebote	37
Tabelle 13:	E _n -Zahlen und Standardunsicherheiten für die CO- Bewertungsangebote	39
Tabelle 14:	E _n -Zahlen und Standardunsicherheiten für die Benzol- Bewertungsangebote	41
Tabelle 15:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 (1 A, 1 B)	72
Tabelle 16:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 (2 A, 2 B)	72
Tabelle 17:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 – Teilprobe 1 A	73
Tabelle 18:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 1 – Teilprobe 1 B	73
Tabelle 19:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 – Teilprobe 2 A	74
Tabelle 20:	Messwerte und Kenngrößen – Probe ORSA Prüfgas 2 – Teilprobe 2 B	74
Tabelle 21:	Toluol	75
Tabelle 22:	o-Xylol	75
Tabelle 23:	m-/p-Xylol	76
Tabelle 24:	Ethylbenzol	76
Tabelle 25:	TN-Messwerte der ergänzenden Prüfgasangebote für Schwefeldioxid	77
Tabelle 26:	TN-Messwerte der ergänzenden Prüfgasangebote für Kohlenmonoxid	78

Abbildungsverzeichnis

Abbildung 1:	Prüfgasangebot PG 1 – Komponente Schwefeldioxid	16
Abbildung 2:	Prüfgasangebot PG 2 – Komponente Schwefeldioxid	17
Abbildung 3:	Prüfgasangebot PG 3 – Komponente Schwefeldioxid	18
Abbildung 4:	Prüfgasangebot PG 4 – Komponente Schwefeldioxid	19
Abbildung 5:	Prüfgasangebot PG 5 – Komponente Schwefeldioxid	20
Abbildung 6:	z-score Übersicht Schwefeldioxid	21
Abbildung 7:	Prüfgasangebot PG 1 – Komponente Kohlenmonoxid	23
Abbildung 8:	Prüfgasangebot PG 2 – Komponente Kohlenmonoxid	24
Abbildung 9:	Prüfgasangebot PG 3 – Komponente Kohlenmonoxid	25
Abbildung 10	Prüfgasangebot PG 4 – Komponente Kohlenmonoxid	26
Abbildung 11:	Prüfgasangebot PG 5 – Komponente Kohlenmonoxid	27
Abbildung 12:	z-score Übersicht Kohlenmonoxid	28
Abbildung 13:	Prüfgasangebot PG 16 – Komponente Benzol	30
Abbildung 14:	Prüfgasangebot PG 17 – Komponente Benzol	31
Abbildung 15:	Prüfgasangebot PG 18 – Komponente Benzol	32
Abbildung 16:	Prüfgasangebot PG 19 – Komponente Benzol	33
Abbildung 17:	Prüfgasangebot PG 20 – Komponente Benzol	34
Abbildung 18:	z-score Übersicht Benzol	35
Abbildung 19:	E _n -Zahlen Schwefeldioxid	38
Abbildung 20:	E _n -Zahlen Kohlenmonoxid	40
Abbildung 21:	E _n -Zahlen Benzol	42
Abbildung 22:	Probe P003: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 4 und PG 14 – ca. 30 μg/m³ Schwefeldioxid	44
Abbildung 23:	Probe P004: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 6 und PG 10 – ca. 100 μg/m³ Schwefeldioxid	45
Abbildung 24:	Prüfgasangebot PG 7: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid-Messung (SO ₂ ca. 30 μg/m³) gegenüber Wasserdampf 4 mmol/mol H ₂ O (ca. 15 % rel. Feuchte)	46
Abbildung 25:	Querempfindlichkeit beim Prüfgasangebot PG 7 der Schwefeldioxid- Messung (SO ₂ ca. 30 μg/m³) gegenüber 4 mmol/mol Wasserdampf (ca. 15 % rel. Feuchte)	47
Abbildung 26:	Prüfgasangebot PG 8: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 100 µg/m³ gegenüber Wasserdampf 10 mmol/mol H ₂ O (ca.	
	40 % rel. Feuchte)	48

Abbildung 27:	Querempfindlichkeit beim Prüfgasangebot PG 8 der Schwefeldioxid- Konzentration SO ₂ ca. 100 μg/m³ gegenüber Wasserdampf 10 mmol/mol H ₂ O (ca. 40 % rel. Feuchte)	49
Abbildung 28:	zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 30 μg/m³ gegenüber Wasserdampf 10 mmol/mol H ₂ O (ca. 40	.50
Abbildung 29:	Prüfgasangebot PG 9: Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 30 μg/m³ gegenüber Wasserdampf 10 mmol/mol H ₂ O (ca. 40 % rel. Feuchte)	.51
Abbildung 30:	Prüfgasangebot PG 11 Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 100 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)	.52
Abbildung 31:	Prüfgasangebot PG 11: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 100 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)	.53
Abbildung 32:		54
Abbildung 33:	Prüfgasangebot PG 12: Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 500 nmol/mol)	.55
Abbildung 34:	Prüfgasangebot PG 13: Vergleich der Schwefeldioxid-Konzentration zur Ermittlung der Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 30 µg/m³ gegenüber Stickstoffmonoxid (NO ca. 50 nmol/mol)	56
Abbildung 35:	Prüfgasangebot PG 13: Querempfindlichkeit der Schwefeldioxid Messung SO ₂ ca. 30 μg/m³ gegenüber Stickstoffmonoxid (NO ca. 50 nmol/mol)	.57
Abbildung 36:	Probe P005: Ermittlung des Vorgabewertes aus den Konzentrationen der Prüfgasangebote PG 18 und PG 25 – ca. 5 μg/m³ Benzol	58
Abbildung 37:	Prüfgasangebot PG 22: Vergleich der Benzol-Konzentration zur Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 4 mmol/mol H ₂ O (ca. 15 % rel. Feuchte)	.59
Abbildung 38:	Prüfgasangebot PG 22: Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 4 mmol/mol H₂O (ca. 15 % rel. Feuchte)	60
Abbildung 39:	Prüfgasangebot PG 23: Vergleich der Benzol-Konzentration zur Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 10 mmol/mol H₂O (ca. 40 % rel. Feuchte)	61
Abbildung 40:	Prüfgasangebot PG 23: Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 10 mmol/mol H2O (ca. 40 % rel. Feuchte)	62

Abbildung 41:	Prüfgasangebot PG 24: Vergleich der Benzol-Konzentration zur	
	Ermittlung der Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 180 μg/m³ Ozon	63
Abbildung 42:	Prüfgasangebot PG 24: Querempfindlichkeit bei ca. 5 μg/m³ Benzol gegenüber 180 μg/m³ Ozon	64
Abbildung 43:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 1	66
Abbildung 44:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 2	67
Abbildung 45:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 1 – Teilprobe A	68
Abbildung 46:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 1 – Teilprobe B	69
Abbildung 47:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 2 – Teilprobe A	70
Abbildung 48:	Robuste Auswertung Benzol – Probe ORSA Prüfgas 2 – Teilprobe B	71

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV NRW) Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0

E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Thorsten Zang, Marion Heße (beide LANUV)

Stand November 2024

Titelbild LANUV / Thorsten Zang

ISSN 1864-3930 (Print), 2197-7690 (Internet), LANUV-Fachberichte

Informationsdienste Informationen und Daten aus NRW zu Natur, Umwelt und Verbraucher

schutz unter

• www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im

WDR-Videotext

Bereitschaftsdienst Nachrichtenbereitschaftszentrale des LANUV

(24-Std.-Dienst) Telefon 0201 714488

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de