

Messung von Benzol in der Außenluft mit Passivsammlern in NRW

Aktualisierung des Nachweises der Gleichwertigkeit von Passivsammlern

LANUV-Fachbericht 132

Inhalt

1	Einleitung	4
2	Durchführung der Messungen	5
2.1	Referenzverfahren	5
2.2	Passivsammler	5
3	Durchführung des Äquivalenznachweises	8
3.1	Anforderung	8
3.2	Durchführung	8
3.3	Ergebnis der Äquivalenzprüfung	9
3.4	Vergleich der Jahresmittelwerte	11
3.5	Standardabweichung aus Doppelproben	15
4	Fazit	15
5	Literaturhinweise	16
Abb	oildungsverzeichnis	17
Tab	pellenverzeichnis	17

1 Einleitung

Die Richtlinie 2008/50/EG über Luftqualität und saubere Luft für Europa ist Grundlage der Immissionsmessungen in Europa. Diese Richtlinie wurde mit der 39. Verordnung zum Bundes-Immissionsschutzgesetz – 39. BImSchV - in nationales Recht umgesetzt. Im Bundesland Nordrhein-Westfalen werden Immissionsmessungen von Benzol sowohl mit dem in der Richtlinie vorgegebenen Referenzverfahren DIN EN 14662 Teil 2 als auch dem sogenannten Passivsammlerverfahren nach DIN EN 14662 Teil 5 durchgeführt. Die Realisierung von Messstandorten lässt sich mit Passivsammlern wesentlich einfacher gestalten als mit dem Referenzverfahren. Aus diesem Grunde werden Passivsammler bevorzugt eingesetzt.

In Anlage 6, Abschnitt A.6 der 39. BlmSchV (entsprechend Anhang 6 der Richtlinie 2008/50/EG) wird das Referenzverfahren für die Messung von Benzol festgelegt:

Es handelt sich um die Methode gemäß DIN EN 14662:2005 (August 2005) "Luftbeschaffenheit – Standardverfahren zur Bestimmung von Benzolkonzentrationen (Teile 1, 2 und 3)".

Bei der Verwendung von Passivsammlern muss sichergestellt werden, dass die Datenqualitätsziele der 39. BlmSchV in "Anlage 1 Datenqualitätsziele" eingehalten werden.

In Abschnitt "B. Nachweis der Gleichwertigkeit" der Anlage 6 heißt es:

"Sollen andere Methoden angewendet werden, muss dokumentiert werden, dass damit gleichwertige Ergebnisse wie mit den unter Abschnitt A genannten Methoden erzielt werden."

Mit vorliegendem Bericht wird dieser Nachweis der Einhaltung der Datenqualitätsziele erbracht. Grundlage dieses Nachweises ist ein EU-Leitfaden zur Äquivalenzprüfung, der im Internet zur Verfügung steht.

2 Durchführung der Messungen

Das Landesamt für Natur, Umwelt und Verbraucherschutz NRW (LANUV) - Fachbereich 43 "Nationales Referenzlabor (EU), Luftqualitätsuntersuchungen" – ist neben dem Umweltbundesamt vom Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit als nationales Referenzlabor für die Richtlinie 2008/50/EG benannt worden. [Bundesanzeiger Nr. 11, S. 205 / 20.01.2011]

Der Fachbereich 43 des LANUV ist von der Deutschen Akkreditierungsstelle GmbH (DAkkS) nach DIN EN ISO/IEC 17025:2005 akkreditiert worden. Diese Akkreditierung beinhaltet die in den folgenden Abschnitten aufgeführten Messverfahren für Benzol in der Außenluft, die in Form von Verfahrens- und Arbeitsanweisungen detailliert beschrieben sind.

2.1 Referenzverfahren

An ca. 10 Messorten werden die Benzol-Immissionskonzentrationen mittels Referenzverfahren nach DIN EN 14662-2 "Standardverfahren zur Bestimmung von Benzolkonzentrationen – Teil 2: Probenahme mit einer Pumpe mit anschließender Lösemitteldesorption und Gaschromatographie" ermittelt. Dazu wird ein definiertes Volumen von ca. 1 m³ Außenluft mittels einer Pumpe angesaugt und an Aktivkohle adsorbiert, im Labor mittels Lösungsmittel eluiert und gaschromatographisch analysiert. Die Probenahmedauer beträgt etwa vier Tage und erfolgt durch automatisierten Probenwechsel quasi-kontinuierlich über ein Messjahr. Die Messunsicherheiten sind im Rahmen des Qualitätsmanagements berechnet und dokumentiert worden. Diese Messungen mit dem Referenzverfahren erfordern eine Stromversorgung sowie eine feste Messstation und sind daher nur bedingt bzw. mit erhöhtem Aufwand anwendbar.

2.2 Passivsammler

An etwa 30 Messorten, an denen keine feste Messstation zur Verfügung steht, werden in NRW Messungen mittels Passivsammlern vom Typ ORSA der Firma Dräger AG Lübeck nach DIN EN 14662-5 "Luftbeschaffenheit - Standardverfahren zur Bestimmung von Benzolkonzentrationen – Teil 5: Diffusions-probenahme mit anschließender Lösemitteldesorption und Gaschromatographie" durchgeführt.

Das LANUV führt seit mehr als 20 Jahren Benzolmessungen mit Passivsammlern durch. Diese Passivsammler werden waagerecht unter einem kleinen Regenschutzdach an vorhandenen Masten von Schildern oder Laternen angebracht (Abbildung 1).

Abbildung 1: Passivsammler unter Schutzdach

Es werden immer zwei Passivsammler an jedem Messort befestigt, um Doppelprobenergebnisse zu erhalten, aus denen ein Mittelwert errechnet wird.

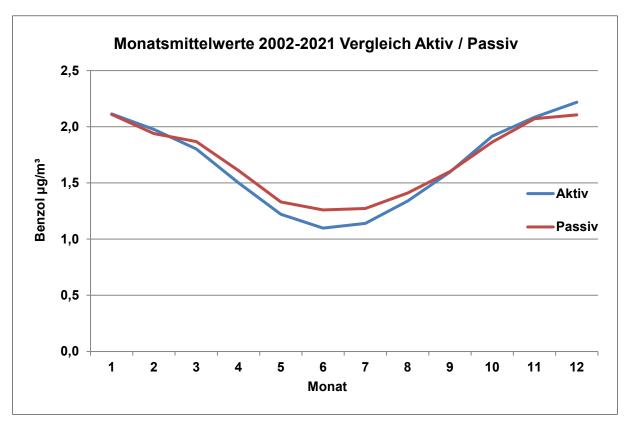
Nach dem Öffnen der Passivsammler am Messort diffundiert Benzol aus der Umgebungsluft in die Aktivkohle der Passivsammler. Nach etwa 4 Wochen werden die Sammler wieder vor Ort verschlossen, der Diffusionsprozess wird unterbrochen und die gesammelte Benzolmasse im Labor analysiert und quantifiziert.

Die genaue Probenahmedauer t wird protokolliert und zur Berechnung der Konzentration nach Gleichung (Gl. 1) verwendet. Als Diffusionskoeffizient wird der vom Hersteller Firma Dräger angegebene Wert von 0,0859 cm²/s verwendet.

$$c = \frac{K \times m}{D \times t} \times 1000$$

Die für die Berechnung benötigten Variablen und Konstanten sind Tabelle 1 zu entnehmen.

Tabelle 1: Variablen und Konstanten zur Berechnung der Benzolkonzentration in der Umgebungsluft mittels Probenahme durch Passivsammler


Größe	Einheit	Definition
С	μg/m³	Konzentration Benzol
K	cm ⁻¹	Gerätekonstante ORSA = 0,8
m	ng	Masse Benzol
D	cm²/s	Diffusionskoeffizient für Benzol (0,0859 bei 25 °C/1013 hPa)
t	s	Expositionsdauer
1000	μg/mg	Umrechnung von mg/m³ in µg/m³

Als Ergebnis einer Messung werden immer Doppelprobenmittelwerte angegeben. Die Proben werden nach Möglichkeit zum Monatswechsel getauscht, so dass etwa Kalendermonatsmittelwerte ermittelt werden.

Auf eine Temperaturkorrektur anhand der jeweiligen Probenahmebedingungen wird bewusst verzichtet, da der Aufwand den Nutzen weit übersteigt. Theoretische Studien haben gezeigt, dass der Einfluss von Temperaturschwankungen bei Anwendung eines Diffusionskoeffizienten und folglich einer effektiven Aufnahmerate bei der mittleren Temperatur über den Probenahmezeitraum oder über den Zeitraum der Datenzusammenfassung (z. B. ein Jahr) ignoriert werden kann (Hafkenscheid 2006). Andere Beiträge zum Unsicherheitsbudget des Verfahrens sind deutlich größer einzuschätzen.

Im Vergleich der Monatsmittelwerte aus den Jahren 2002 bis 2021 von aktiver Probenahme - die auf 20 °C und 1013 hPa bezogen sind - und passiver Probenahme, sind keine signifikanten Temperatureinflüsse erkennbar (Abbildung 2).

Vor dem Hintergrund dieser Überlegungen und angesichts der, gemessen an den Anforderungen, moderaten Messunsicherheit des Passivsammlerverfahrens (siehe nachfolgende Ausführungen) wird auf eine Temperaturkorrektur der Aufnahmerate in der Praxis verzichtet und der o. g. Diffusionskoeffizient verwendet.

Abbildung 2: Monatsmittelwerte aktiver und passiver Probenahme

3 Durchführung des Äquivalenznachweises

3.1 Anforderung

Für ortsfeste Messungen wird in der o. g. EU-Richtlinie eine erweiterte Messunsicherheit von maximal 25 % (95 % Vertrauensbereich) zugelassen. Die Unsicherheit gilt für Einzelmessungen, gemittelt über den betreffenden Zeitraum bezogen auf den Immissionsgrenzwert von 5 μ g/m³. Die vorgeschriebene Datenverfügbarkeit von mindestens 90 % ist bei den Messungen mit beiden Verfahren einzuhalten.

3.2 Durchführung

In jedem Messjahr werden seit 2002 an 3 bis 8 Messstationen Parallelmessungen von Referenzmethode und Passivsammlermethode durchgeführt. Die Messorte charakterisieren unterschiedliche Belastungssituationen, wie z. B. Verkehr, Industrie oder städtischen Hintergrund (siehe Tabelle 2).

Alle meteorologischen Einflüsse, wie z. B. Temperatur, Windgeschwindigkeit und Luftfeuchte, sind in den Messergebnissen enthalten. Die Benzolkonzentrationen liegen in der Regel deutlich unterhalb des Grenzwertes von 5 µg/m³. Die Zusammensetzung (Matrix) der Luft bei diesen Feldmessungen entspricht dabei der Realität.

Tabelle 2: Messorte der Vergleichsmessungen

Stationsname	Kürzel	EU-Code	Stationstyp
Bielefeld-Ost	BIEL	DENW067	Hintergrund
Bottrop-Welheim	BOTT	DENW021	Industrie
Essen-Schuir (LANUV)	ELAN	DENW247	Hintergrund
Dortmund-Hörde	HOER	DENW011	Hintergrund
Essen-Schuir (LUA)	LISE	DENW028	Hintergrund
Aachen Wilhelmstraße	VACW	DENW207	Verkehr
Hagen Emilienplatz	VHAG	DENW077	Verkehr
Hagen Graf-von-Galen-Ring	VHAM	DENW133	Verkehr
Köln Hohenstaufenring	VKOE	DENW145	Verkehr
Köln Turiner Straße	VKTU	DENW212	Verkehr
Mönchengladbach Düsseldorfer Straße	VMGR	DENW100	Verkehr
Münster Friesenring	VMUE	DENW098	Verkehr
Wuppertal Gathe	VWEL	DENW189	Verkehr
Wuppertal Friedrich-Engels-Allee	VWUP	DENW097	Verkehr

Die Messergebnisse der Parallelmessungen dienen hier als Grundlage zum Nachweis der Einhaltung von Anforderungen der Richtlinie 2008/50/EG bzw. der deutschen Umsetzung in der 39. BImSchV.

Die kleinste zeitliche Auflösung des Referenzverfahrens beträgt in der Anwendungsvariante des LANUV vier Tage, die zeitliche Auflösung der Passivsammlermessungen beträgt etwa vier Wochen. Probenahmestart und -ende der beiden Verfahren sind wegen Undurchführbarkeit in

der Praxis nicht synchronisiert, sodass es zu Überlappungen der Zeiten kommt. Die Konzentrationen der 4-tägigen Referenzmessungen wurden so gemittelt, dass sie etwa (± 2 Tage) den Probenahmezeitraum der Passivsammler abdecken. Dies kann zu einem erhöhten Beitrag zur Messunsicherheit führen. Hinzu kommt, dass die kleinräumigen Probenahmeorte der aktiven und der passiven Messung nie exakt identisch sein können. Wie bereits erwähnt, werden die Ergebnisse der Passivsammler-Doppelproben jeweils zu einem Wert gemittelt. Alle nachfolgenden Aussagen zur Messunsicherheit beziehen sich auf diese Anwendungsvariante.

Die Wertepaare von Referenzverfahren und Passivsammlern wurden mit dem dafür entwickelten MS-Excel© Sheet "Equivalence Tool V3.1" mittels Regressionsanalysen auf Äquivalenz getestet (orthogonale Regression). Dieses Rechenblatt setzt die Regelungen des EU-Leitfadens zur Äquivalenzprüfung um. Die erweiterte Messunsicherheit für das Referenzverfahren wurde im Rahmen der Akkreditierung mit 8 % (entspricht bei dem Grenzwert 0,4 µg/m³) berechnet. Diese Berechnung wurde separat dokumentiert.

3.3 Ergebnis der Äquivalenzprüfung

In die Prüfung sind die Ergebnisse von 877 Wertepaaren (4-Wochenmittel) aus den Jahren 2002 bis 2021 eingegangen. Es handelt sich um reale Feldmessungen, die unter Routinebedingungen analysiert worden sind. Eine Kalibrierung zwischen Referenzverfahren und Passivsammlern wurde nicht durchgeführt. Die Ergebnisse der Passivsammler basieren neben der analytischen Kalibrierung nur auf der Berechnung nach Gl. 1.

Im Rahmen eines konservativen Ansatzes wurde die Messunsicherheit des Referenzverfahrens zunächst auf "Null" gesetzt; ferner wurden Ausreißer nicht eliminiert. Die erweiterte Messunsicherheit (95 %) (s. Tabelle 3) der Benzolmessungen mit Passivsammlern beträgt unter diesen Randbedingungen 12,4 % und liegt damit etwa bei der Hälfte der zulässigen 25 %. Setzt man die Messunsicherheit des Referenzverfahrens in das o. g. Excel-Sheet ein, ergibt sich eine erweiterte Messunsicherheit von 5,6 %. Die Ergebnisseite des Excel-Sheets sowie das Diagramm der orthogonalen Regressionsanalyse von Referenzmethode zur Passivsammlermethode sind in Tabelle 3 bzw. Abbildung 3 dargestellt.

Das Benzolmessverfahren mit Passivsammlern vom Typ ORSA, wie es vom Landesamt für Natur, Umwelt und Verbraucherschutz NRW (LANUV) in Nordrhein-Westfalen durchgeführt wird, erfüllt demnach die Datenqualitätsziele der EU und ist somit als äquivalent zum Referenzverfahren anzusehen.

Correction	CM data not corrected			
	Civi data fiot corrected			
Slope	Slope (b) = $0.96 + - 0.01$	1 Significantly	y different from 1	
Intercept I	Intercept (a) = 0,102 +/- (),02 µg/m³ Si	ignificantly differ	ent from 0
n i	n = 877			
R^2	R Squared = 0.891			
	Expanded Uncertainty (W	/cm) = 12.4 %	6	
,	Between Reference Meth	, ,		Not Calculated
· · · · · ·			, , , ,,	
` '	Random Uncertainty of the			
u(bs,CM)	Between Candidate Meth	od Uncertaint	y (u(bs,CM)) = 1	Not Calculated
%(RM)>	Percentage of RM greate	r than thresho	old not defined µ	$g/m^3 = 0\%$
RMCM Outside CL	RM CM outside Confiden	ce Level at 0,	99 CL = 19	
Random Term I	Random Term = 0,294 μα	g/m³		
Bias at LV	Bias at LV = -0,098 μg/m	3		
	Additional Uncertainty =			
,	Number of RM greater that	. 0	not defined ua/m	³ = 0
` '	Pollutant = User Defined;			·
F	Benzol ORSA			
None	Delizer Orton			
	0.400	. /	0.000	Circuit and a different from 0
Intercept not forced Slope not forced	0,102 0,960	+/- +/-	0,020 0,011	Significantly different from 0 Significantly different from 1
Random Term	0,294		.,.	,
Bias at LV	-0,098			
Combined Uncertainty	0,310			
Expanded Uncertainty (Wcm)	12,398 hod (u(RM)) 0.000			
Random Uncertainty of the Reference Met Between Reference Method Uncertainty (u				
R squared	0.891			
Between Candidate Method Uncertainty (u	****			
Percentage of RM greater than threshold r	not defined 0,000			
subtracting 0,102				
RMCM Confidence Level	0,76			
Intercept forced through origin	0,000	+/-	0,000	Regression forced through origin
Slope forced through origin Number of RM greater than threshold not of	1,008 defined 0	+/-	0,005	Not Significantly different from 1

Abbildung 3: Ergebnisbericht des Excel-Sheet Equivalence Tool V3.1 für Monatsmittelwerte

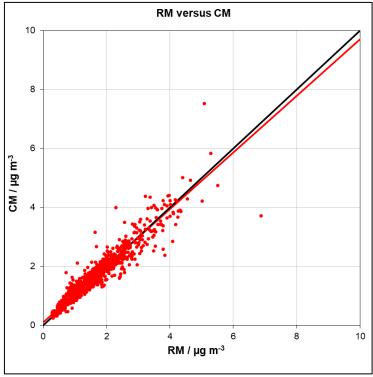
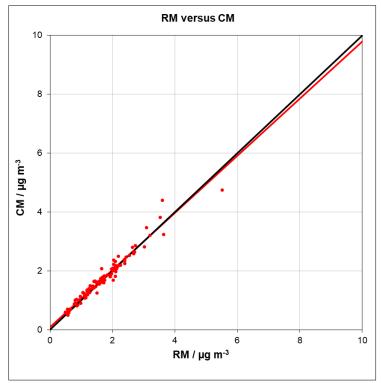


Abbildung 4: Diagramm der orthogonalen Regression aus Excel-Sheet Equivalence Tool V3.1.

RM = Referenzmethode; CM = Kandidat-Methode (Passivsammler)

3.4 Vergleich der Jahresmittelwerte

Es wurden von jeder Messstation, an der Parallelmessungen stattfanden, die Jahresmittelwerte verglichen. Hier zeigt sich ebenfalls eine gute Übereinstimmung dieser Jahresmittel mit dem Referenzverfahren (siehe Tabelle 4 und Abbildung 4).

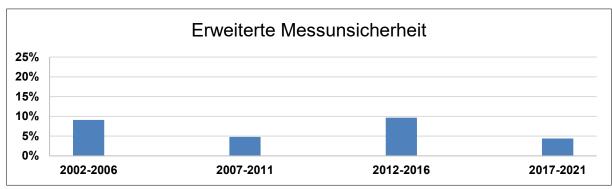

 Tabelle 3:
 Vergleich der Benzol-Jahresmittelwerte einzelner Messstationen

			Passiv	Referenz
Station		Jahr		zol μg/m³
Aachen Wilhelmstr.	VACW	2007	2,5	2,2
Aachen Wilhelmstr.	VACW	2008	2,1	2,0
Aachen Wilhelmstr.	VACW	2009	2,1	2,2
Aachen Wilhelmstr.	VACW	2010	2,1	2,1
Aachen Wilhelmstr.	VACW	2011	2,0	2,0
Aachen Wilhelmstr.	VACW	2012	1,8	1,7
Aachen Wilhelmstr.	VACW	2013	1,7	1,6
Aachen Wilhelmstr.	VACW	2014	1,6	1,5
Aachen Wilhelmstr.	VACW	2015	1,4	1,3
Aachen Wilhelmstr.	VACW	2016	1,4	1,3
Aachen Wilhelmstr.	VACW	2017	1,3	1,1
Aachen Wilhelmstr.	VACW	2018	1,2	1,1
Aachen Wilhelmstr.	VACW	2019	1,1	1,0
Aachen Wilhelmstr.	VACW	2020	1,0	0,8
Aachen Wilhelmstr.	VACW	2021	0,8	0,9
Bielefeld-Ost	BIEL	2002	2,0	2,0
Bielefeld-Ost	BIEL	2003	2,4	2,0
Bottrop-Welheim	BOTT	2002	3,0	3,1
Bottrop-Welheim	BOTT	2003	3,0	2,9
Bottrop-Welheim	BOTT	2004	3,2	2,9
Bottrop-Welheim	BOTT	2005	2,4	2,4
Bottrop-Welheim	BOTT	2006	2,9	3,0
Bottrop-Welheim	BOTT	2007	2,3	2,4
Bottrop-Welheim	BOTT	2008	2,2	2,2
Bottrop-Welheim	BOTT	2009	2,1	2,1
Bottrop-Welheim	BOTT	2010	1,8	1,9
Bottrop-Welheim	BOTT	2011	2,0	1,8
Bottrop-Welheim	BOTT	2012	1,8	1,9
Bottrop-Welheim	BOTT	2013	2,5	2,5
Bottrop-Welheim	BOTT	2014	1,7	1,7
Bottrop-Welheim	BOTT	2015	1,9	2,0
Bottrop-Welheim	BOTT	2016	1,8	1,7
Bottrop-Welheim	BOTT	2017	2,0	2,0
Bottrop-Welheim	BOTT	2018	1,6	1,7
Bottrop-Welheim	BOTT	2019	1,7	1,8
Bottrop-Welheim	BOTT	2020	1,8	1,7
Bottrop-Welheim	BOTT	2021	1,3	1,3
Dortmund-Hörde	HOER	2002	1,7	1,7
Dortmund-Hörde	HOER	2003	2,2	1,6
Dortmund-Hörde	HOER	2004	1,7	1,4
Dortmund-Hörde	HOER	2005	1,5	1,2
Essen-Schuir (LUA)	LISE	2002	1,2	1,2
Essen-Schuir (LUA)	LISE	2003	1,4	1,2

			Passiv	Referenz
Station		Jahr	Benzol µg/m³	
Essen-Schuir (LUA)	LISE	2004	1,2	1,1
Essen-Schuir (LUA)	LISE	2005	1,0	1,0
Essen-Schuir (LUA)	LISE	2006	1,0	0,9
Essen-Schuir (LUA)	LISE	2007	1,0	0,8
Essen-Schuir (LANUV)	ELAN	2008	0,9	0,9
Essen-Schuir (LANUV)	ELAN	2009	0,9	1,1
Essen-Schuir (LANUV)	ELAN	2010	1,0	0,9
Essen-Schuir (LANUV)	ELAN	2011	0,9	0,9
Essen-Schuir (LANUV)	ELAN	2012	0,7	0,7
Essen-Schuir (LANUV)	ELAN	2013	0,9	0,8
Essen-Schuir (LANUV)	ELAN	2014	0,7	0,6
Essen-Schuir (LANUV)	ELAN	2015	0,7	0,6
Essen-Schuir (LANUV)	ELAN	2016	0,7	0,6
Essen-Schuir (LANUV)	ELAN	2017	0,7	0,7
Essen-Schuir (LANUV)	ELAN	2018	0,6	0,6
Essen-Schuir (LANUV)	ELAN	2019	0,6	0,5
Essen-Schuir (LANUV)	ELAN	2020	0,6	0,5
Essen-Schuir (LANUV)	ELAN	2021	0,5	0,6
Hagen Emilienplatz	VHAG	2002	3,2	3,6
Hagen Graf-vGalen-Ring	VHAM	2008	3,0	2,9
Hagen Graf-vGalen-Ring	VHAM	2009	2,9	2,9
Hagen Graf-vGalen-Ring	VHAM	2010	2,7	2,7
Hagen Graf-vGalen-Ring	VHAM	2011	2,6	2,7
Hagen Graf-vGalen-Ring	VHAM	2012	2,1	2,2
Hagen Graf-vGalen-Ring	VHAM	2013	2,1	2,1
Hagen Graf-vGalen-Ring	VHAM	2014	2,1	2,0
Hagen Graf-vGalen-Ring	VHAM	2015	1,8	1,7
Hagen Graf-vGalen-Ring	VHAM	2016	1,7	1,7
Hagen Graf-vGalen-Ring	VHAM	2017	1,6	1,5
Hagen Graf-vGalen-Ring	VHAM	2018	1,6	1,6
Hagen Graf-vGalen-Ring	VHAM	2019	1,5	1,5
Hagen Graf-vGalen-Ring	VHAM	2020	1,3	1,2
Hagen Graf-vGalen-Ring	VHAM	2021	1,1	1,1
Köln Hohenstaufenring	VKOE	2005	2,4	2,0
Köln Hohenstaufenring	VKOE	2006	2,1	2,1
Köln Turiner Straße	VKTU	2007	1,9	1,6
Mgladb. Düsseld. Str.	VMGR	2002	1,3	1,5
Münster Friesenring	VMUE	2002	1,7	2,0
Wuppertal FrEAllee	VWUP	2002	3,8	3,6
Wuppertal Gathe	VWEL	2008	2,7	2,4
Wuppertal Gathe	VWEL	2011	2,3	2,4
Wuppertal Gathe	VWEL	2012	2,0	2,1
Wuppertal Gathe	VWEL	2013	2,3	2,4
Wuppertal Gathe	VWEL	2014	1,8	1,8
Wuppertal Gathe	VWEL	2015	1,6	1,6
Wuppertal Gathe	VWEL	2016	1,6	1,6
Wuppertal Gathe	VWEL	2017	1,6	1,5
Wuppertal Gathe	VWEL	2018	1,4	1,4
Wuppertal Gathe	VWEL	2019	1,5	1,4
Wuppertal Gathe	VWEL	2020	1,4	1,2
Wuppertal Gathe	VWEL	2021	1,1	1,2
Mittelwert	V V V L L	2021	1,72	1,67
······································		1	1,12	1,01

Correction	CM data not corrected				
Slope	Slope (b) = $0.971 + -0.02$	21 Not Signific	antly different fr	om 1	
Intercept	Intercept (a) = 0,089 +/-	0.04 µg/m³ Sic	nificantly differe	nt from 0	
n '	n = 101	, 10	,		
R^2	R Squared = 0,953				
	'				
Expanded Uncertainty	Expanded Uncertainty (V	vcm) = 7,22 %			
u(bs,RM)	Between Reference Meth	od Uncertainty	(u(bs,RM)) = N	ot Calculated	
u(RM)	Random Uncertainty of the	ne Reference M	lethod (u(RM)) =	: 0 μg/m³	
u(bs,CM)	Between Candidate Meth	od Uncertainty	(u(bs,CM)) = N	ot Calculated	
%(RM)>	Percentage of RM greate	r than threshol	d not defined µg	/m³ = 0%	
RMCM Outside CL	RM CM outside Confiden				
Random Term	Random Term = 0,171 µg				
Bias at LV	Bias at LV = -0,058 µg/m				
Additional Uncertainty	, 10	Additional Uncertainty = 0 µg/m³			
n(RM)>	Number of RM greater the	. 0	nt defined ua/m³	= 0	
Pollutant and Subset	Pollutant = User Defined:			•	
		Subset - All t	Jala		
User Text	Benzol ORSA				
None					
Intercept not forced	0,089	+/-	0,040	Significantly different from 0	
Slope not forced Random Term	0,971 0.171	+/-	0,021	Not Significantly different from 1	
Bias at LV	-0,058				
Combined Uncertainty	0,180				
Expanded Uncertainty (Wcm)	7,218				
Random Uncertainty of the Reference I	Method (u(RM)) 0,000				
Between Reference Method Uncertaint	y (u(bs,RM)) Not Calculated				
R squared	0,953				
Between Candidate Method Uncertaint					
Percentage of RM greater than threshold	old not defined 0,000				
subtracting 0,089	0.45				
RMCM Confidence Level	0,45	+/-	0.000	Pagranaian formed through avisin	
Intercept forced through origin Slope forced through origin	0,000 1,014	+/-	0,000 0,009	Regression forced through origin Not Significantly different from 1	
Number of RM greater than threshold n		1,-	0,003	Not Organicantly unletent norm	

Abbildung 5: Ergebnisbericht des Excel-Sheet Equivalence Tool V3.1 für Jahresmittelwerte


Abbildung 6: Lineare Regression der Jahresmittelwerte verschiedener Messorte aus Excel-Sheet Equivalence Tool V3.1

Die Mittelwerte jeweils aller Parallelmessungen eines Kalenderjahres in Tabelle 6 zeigen die Stabilität der beiden Messverfahren über einen längeren Zeitraum:

Tabelle 4: Jahresmittelwerte der Kalenderjahre (Mittelwerte aller Messstationen; μg/m³)

	RM	СМ
Messjahr	Referenz	Passivsammler
2002	2,34	2,24
2003	1,93	2,25
2004	1,80	2,03
2005	1,65	1,83
2006	2,00	2,00
2007	1,75	1,93
2008	2,08	2,18
2009	2,08	2,00
2010	1,90	1,90
2011	1,96	1,96
2012	1,72	1,68
2013	1,88	1,90
2014	1,52	1,58
2015	1,44	1,48
2016	1,38	1,44
2017	1,36	1,44
2018	1,28	1,28
2019	1,24	1,28
2020	1,08	1,22
2021	1,02	0,96

Wird die lineare Regression zur Äquivalenzbestimmung nicht für den gesamten Zeitraum der vergangenen zwanzig Jahre durchgeführt, sondern in Abschnitte von jeweils fünf Jahren unterteilt, so kann die Entwicklung der Genauigkeit der Messungen mit den Passivsammlern gezeigt werden. Abbildung 5 zeigt die erweiterte Messunsicherheit über je fünf Jahre. Hierbei ist ersichtlich, dass die Genauigkeit der Methode schwankt, jedoch ein genereller Trend hin zu niedrigeren Messunsicherheiten und damit höheren Genauigkeiten zu beobachten ist.

Abbildung 7: Erweiterte Messunsicherheit (95%) für Zeiträume von jeweils fünf Jahren

3.5 Standardabweichung aus Doppelproben

Aus den Probenpaaren (Doppelproben) der Passivsammler der Jahre 2002 bis 2021 wurde die Standardabweichung aus Doppelproben für Benzol berechnet (Tabelle 7). Ausreißer wurden nicht eliminiert.

 Tabelle 5:
 Kenngrößen für Analysen aus Doppelbestimmungen

Größe	Wert
Anzahl Wertepaare	7437
Mittlere Konzentration (µg/m³)	2,07
Standardabweichung aus Doppelproben (µg/m³)	0,11
Relative Standardabweichung	5,3%

4 Fazit

Die Anforderung der Datenqualitätsziele der Richtlinie 2008/50/EG über Luftqualität und saubere Luft für Europa bzw. der 39. Verordnung zum Bundes-Immissionsschutzgesetz – 39. BImSchV werden mit dem vom Landesamt für Natur-Umwelt und Verbraucherschutz NRW (LANUV) eingesetzten Passivsammlerverfahren voll erfüllt.

Die maximal zulässige Messunsicherheit von 25 % wird mit höchstens 12,4 % sicher eingehalten. Der Vergleich der Jahresmittelwerte aus den Feldversuchen der letzten 20 Jahre zeigt eine konstant gute Übereinstimmung der Passivsammlermethode mit dem Referenzverfahren.

5 Literaturhinweise

- Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa
- 39. BlmSchV "Neununddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes Verordnung über Luftqualitätsstandards und Emissionshöchstmengen vom 2. August 2010 (BGBI. I S. 1065)"
- DIN EN 14662-2 Deutsche Fassung
 - Luftbeschaffenheit Standardverfahren zur Bestimmung von Benzolkonzentrationen Teil 2: Probenahme mit einer Pumpe mit anschließender Lösemitteldesorption und Gaschromatographie
- DIN EN 14662-5 Deutsche Fassung
 - Luftbeschaffenheit –Standardverfahren zur Bestimmung von Benzolkonzentrationen-Teil 5: Diffusionsprobenahme mit anschließender Lösemitteldesorption und Gaschromatographie
- LANUV-Fachbericht 53: Messung von Benzol in der Außenluft mit Passivsammlern in NRW Nachweis der Gleichwertigkeit mit dem Referenzverfahren der Europäischen Richtlinie 2008/50/EG und der 39. BlmSchV (2014)
- Hafkenscheid, Th. L. Effect of temperature on long-term diffusive sampling. The Diffusive Monitor, 15 (2006) 4-5
- Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods (January 2010), http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf
- MS Excel© Sheet zum Nachweis der Äquivalenz eines Kanditatenverfahrens mit einem Referenzverfahren gemäß 39.BImSchV. Erstellt von David HARRISON Version 3.1 vom 31.05.2022 https://circabc.europa.eu/ui/group/cd69a4b9-1a68-4d6c-9c48-77c0399f225d/library/24e15212-5858-4511-9da1-7ffb32683282/details (abgerufen 17.10.2022)

Abbildungsverzeichnis

Abbildung 1	: Passivsammler unter Schutzdach	6
Abbildung 2	2: Monatsmittelwerte aktiver und passiver Probenahme	7
Abbildung 3	3: Ergebnisbericht des Excel-Sheet Equivalence Tool V3.1 für Monatsmittelwerte	10
Abbildung 4	I: Diagramm der orthogonalen Regression aus Excel-Sheet Equivalence Tool V3.1. RM = Referenzmethode; CM = Kandidat-Methode (Passivsammler)	10
Abbildung 5	5: Ergebnisbericht des Excel-Sheet Equivalence Tool V3.1 für Jahresmittelwerte	13
Abbildung 6	S: Lineare Regression der Jahresmittelwerte verschiedener Messorte aus Excel-Sheet Equivalence Tool V3.1	13
Abbildung 7	7: Erweiterte Messunsicherheit (95%) für Zeiträume von jeweils fünf Jahren	14
Tabellen	verzeichnis	
Tabelle 1:	Variablen und Konstanten zur Berechnung der Benzolkonzentration in der Umgebungsluft mittels Probenahme durch Passivsammler	6
Tabelle 2:	Messorte der Vergleichsmessungen	8
Tabelle 3:	Vergleich der Benzol-Jahresmittelwerte einzelner Messstationen.	11
Tabelle 4:	Jahresmittelwerte der Kalenderjahre (Mittelwerte aller Messstationen; μg/m³)	14
Tabelle 5:	Kenngrößen für Analysen aus Doppelbestimmungen	15

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV)

Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0 Telefax 02361 305-3215

E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Ludger Breuer, Martin Meyer (beide LANUV)

Titelbild Martin Meyer (LANUV)

ISSN 1864-3930 (Print), 2197-7690 (Internet), LANUV-Fachberichte

Stand November 2022

Informationsdienste Informationen und Daten aus NRW zu Natur, Umwelt und Verbraucher

schutz unter

• www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im

• WDR-Videotext

Bereitschaftsdienst Nachrichtenbereitschaftszentrale des LANUV

(24-Std.-Dienst) Telefon 0201 714488

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de